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Dynamics of Fission Modes Studied with the 3-dimensional Langevin Equation
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We investigate fission modes of 270Sg with 3-dimensional Langevin equation. The shell correction energy is included
in the total energy. The mass distribution and the total kinetic energy (TKE) distribution of fission fragments are
calculated and are compared with the experimental results. Mass asymmetric fission dominates in the mode with
the lower TKE, which is in agreement with the experimental result. The dynamics from saddle to scission is also
discussed.

1. Introduction

In the heavy compound nucleus with A > 200, fission modes
have been investigated from the measurement of the mass and
the total kinetic energy (TKE) distribution at low excitation en-
ergy and the effect of shell energy are established well. At low
excitation energy, the asymmetric fission mode is observed for
all nuclei with A > 200.

For example, the measurement of the mass-energy distribu-
tion of the fission fragments of 270Sg (Z = 106) was performed
by Itkis et al.1 It was observed that at low excitation energy,
the mass asymmetric fission dominates in the components of
the mode having lower TKE, whereas this tendency vanishes at
high excitation case. The domination of the mass asymmetric
fission in the components having low TKE is the characteristic
of the nuclei heavier than the fermium region. From these re-
sults, the existence of the different dynamical fission paths was
pointed out.

The problem of fission modes has also been studied theoreti-
cally. For example, Pashkevich calculated the energy surface in
the multi-dimensional parameter space including the shell en-
ergy and found several saddle points and fission valleys.2 How-
ever, it was a static calculation and was not sufficient to under-
stand the mass-energy distribution. In order to understand these
phenomena, the effect of the shell correction energy to the dy-
namical fission path is essential.

Therefore, we investigate fission modes from the mass and
TKE distribution calculated with the 3-dimensional Langevin
equation and investigate the influence of dynamics from saddle
to scission. At the high excitation energy where the shell effect
vanishes, the fission process has been studied on the basis of
the fluctuation-dissipation dynamics and the Langevin equation3

has been used to describe this dynamics. The 3-dimensional
Langevin calculation agreed with experimental values of the
mass distribution and the total kinetic energy of fission frag-
ments. In this study, including the shell correction energy, we
extend the 3-dimensional Langevin calculation to the case of
the low excitation.

In this paper, we investigate fission modes of 270Sg system
and present results of the calculation of the mass distributions
and the total kinetic energy of fission fragments. The influence
of the potential energy on the dynamics is also discussed.

2. Framework

The shape of nucleus is described by the Two-Center
parametrization and Figure 1 shows various shapes of 270Sg with
this parametrization. Z0 denotes the distance between the har-
monic oscillators in the unit of the radius of the spherical com-
pound nuclei (R0 = r0(A1 + A2)1/3), δ denotes the deformation
of the fragments with the constraint that both fragments have
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same deformation (δ1 = δ2), and α denotes the mass asymme-
try parameter (α = (A1 −A2)/(A1 + A2)), where A1 and A2 are
the mass number of the fragments. The liquid drop energy, the
surface energy, and the coulomb energy are also calculated with
this parametrization.

We describe the fission process by the following equation,
called as the Langevin equation,
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where the suffix stands for Z0, δ, or α. Summation over repeated
indices is implied. V (q) is the potential energy taken account
of shell effect, mi j(q) and γi j(q) are the shape dependent col-
lective inertia and dissipation tensors. We assume the random
forces as the white noise type of which the normalized random
force R(t) is to satisfy 〈R(t)〉 = 0, 〈Ri(t1)Rj(t2)〉 = 2δi jδ(t1 − t2).
The strength of random force gi j is calculated from γi jT = gikgk j

that is given by the fluctuation-dissipative theorem. T denotes
the temperature of the compound nucleus that is defined as
E∗ = aT 2 with the excitation energy of compound nucleus and
the level density parameter a of Töke and Swiatecki.4 The in-
ertia tensor is calculated using the hydrodynamical model with
Werner-Wheeler approximation5 for the velocity field, and wall-
and-window one-body dissipation6 is adopted for the dissipation
tensor.

The shell correction energy of the two-center shell model is
calculated with the code TWOCTR.7,8 The shell correction en-
ergy depends on the temperature of the nucleus. The tempera-
ture dependent factor of the shell correction energy is assumed
as exp(−E∗/Ed), where E∗ is the excitation energy and Ed is
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Figure 1. The various shapes with the Two-Center parametrization in
the Z0-δ plane.
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Figure 2. The landscape of this figure shows the total energy projected
to Z0-δ plane of 270Sg. The circle denotes the ground state of compound
nucleus and the cross denotes the first saddle point in the case of α = 0.
The line with dot is the sample trajectory of the calculation.
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Figure 3. The distribution of the deformation of fission fragments at
scission.

the shell damping energy that is taken to be 20 MeV.9

Figure 2 shows the potential landscape of 270Sg at E∗ =
10 MeV in the case of α = 0. The circle denotes the ground
state of this system and is the start point of the Brownian parti-
cle in Langevin calculation. The cross at Z0 = 0.3 and δ = 0.2 in
Figure 2 indicates the first saddle of this system in the case of
α = 0.

3. Numerical Result

We investigate fission modes of the compound nucleus
270Sg in the case that the excitation energy E∗ is 10 MeV
(T ∼ 0.6 MeV). In this system, the fission barrier height Bf is
approximately 5 MeV.

The histogram in Figure 3 shows the distribution of the de-
formation of fission fragments. In this figure, two peaks can be
seen clearly at δ = 0.25 and 0.36. From this result, we found that
different dynamical fission paths exist.

The histogram in Figure 4 shows the distribution of the TKE
of fission fragments. In this figure, different from Figure 3, it
is not apparent that this distribution consists of several compo-
nents. However, it is found that this TKE distribution cannot be
fitted by a single Gaussian. According to the result that is shown
in Figure 3, we divide the events of the fission fragments into
two parts: one is the events with the deformation of fragments
being δ > 0.3 and the other is that with δ < 0.3. In Figure 4,
the dashed line denotes the TKE distribution of the events with
δ > 0.3 and the dotted line denotes that with δ < 0.3. We found
that the TKE of fragments with δ > 0.3 is smaller than that with

Figure 4. The distribution of the total kinetic energy of fission frag-
ments. The dashed line denotes the TKE distribution for δ > 0.3. The
dotted line denotes the case of δ < 0.3.

Figure 5. The distribution of the mass asymmetry of fission fragments
with the deformation δ > 0.3. The dashed line denotes the one fitted
with four Gaussians and the dotted lines denote the main components
of the fit.

δ < 0.3. Fragments with lower TKE have larger deformation.
It is seen that the TKE distribution with δ > 0.3 has a simple
peak structure and can be expressed as a single Gaussian. We
expect that the distribution with δ > 0.3 is from a single mode.
As for components with δ < 0.3, the statistical frequency is low
compared with that with δ > 0.3. We expect from Figure 3 that
the events with δ < 0.3 contain the contribution from the dis-
tribution that has a peak around δ∼ 0.36. Since we still cannot
extract a single mode from the components with δ < 0.3, we in-
vestigate the mass distribution only for the events with δ > 0.3
in this study.

The histogram of Figure 5 shows the distribution of the mass
asymmetry α of fission fragments with δ > 0.3. The dashed line
is the result of the fitting with four Gaussians and the dotted
lines are the main Gaussian components that are used in the fit-
ting. From this result, the asymmetric fission can be seen clearly.
Peaks of the main Gaussian components are at α = 0.056 and
−0.057.

The experimental results show that the mass asymmetric fis-
sion dominates in the mode having lower TKE distribution. Itkis
et al.1 proposed that the reaction of 270Sg→ 127Sn + 143Ba corre-
sponding to Standard II mode was the main fission channel due
to the effect of the deformed shell (Z = 56) and this reaction cor-
responds to α = 0.06. We consider that our calculation results
correspond to this experimental one. However, the peak energy
of the TKE distribution in our calculation is larger than that of
the experiment by about 30 MeV. At present stage, this differ-
ence is yet to be clarified.

Next, we consider the origin of this mass asymmetric dis-
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Figure 6. The energy landscape of 270Sg projected to Z0-α in the case
of the deformation δ = 0.2.

tribution. Although the dynamical motion is calculated in the
three-dimensional parameter space, it is instructive to look at the
potential surface that are projected onto two-dimensional spaces
like Z0-α and Z0-δ. Figure 6 shows the potential projected to
Z0-α at δ = 0.2 that corresponds to the saddle point deforma-
tion in Z0-δ plane of Figure 1. Figure 7 shows the potential
projected to Z0-α at δ = 0.36 that corresponds to the maximum
of the distribution in Figure 3. In the Z0-α plane, the saddle
point locates around at Z0 = 0.5 and α =±0.15. First, in Fig-
ure 6, when fissioning nucleus goes from the ground state to the
saddle point according to potential surface, the mass asymme-
try α increases (the arrow 1). After passing through the saddle
point (the cross), the fissioning nucleus goes toward scission and
Z0 and δ increase. At the same time, α decreases following the
potential slope as shown by the arrow 2 in Figure 6. As is seen
from the sample trajectory in Figure 2, after passing through the
saddle point, the deformation δ increases from 0.2 to 0.4 with
large fluctuation (around the number 3) while the increase of
Z0 is relatively small. With the increase of δ, the bump due to
the shell effect becomes prominent at Z0 = 0.75 and α = 0 in Fig-
ure 7. Since the Brownian particle keeps away from this bump,
the mass asymmetry α increases again (the arrow 4) and the
fission nucleus goes to asymmetric direction. This is how the
asymmetry of fission fragments is determined.

It should be noted that the potential around Z0 = 1.2∼ 1.5 is
very flat in α direction in the present system. In addition, the
mass asymmetry α at the scission point differs from the one at
the saddle point. Therefore, it is inappropriate to determine the
mass asymmetry α by the potential valley; the dynamics after
the saddle point plays a very important role for the determina-
tion of the mass asymmetry at scission. The mass asymmetry
distribution cannot be estimated only from the position of the
saddle point such as the discussion with the static calculation.
Thus, the dynamical calculation is very important for the under-
standing of the fission modes.

4. Summary

We studied the problem of fission mode by using the 3-
dimensional Langevin equation on the basis of the fluctuation-
dissipation dynamics and discussed the mass and the TKE dis-
tribution.

The static calculation in which the potential energy is calcu-
lated such as the works by Pashkevich is not sufficient to under-
stand the mass-energy distribution. The dynamical calculation
that takes account of the shell effect is needed in order to under-

Figure 7. The energy landscape of 270Sg projected to Z0-α in the case
of the deformation δ = 0.36.

stand fission paths. We solved the 3-dimensinal Langevin equa-
tion numerically in the potential energy including the shell cor-
rection and investigated fission modes for the system of 270Sg.

From the calculation results, we clearly found two fission
modes. The one of these fission modes corresponds to the Stan-
dard II mode that has large deformation and has lower TKE. In
the mass distribution of the fission fragments of this mode, the
mass asymmetric fission dominates. This result is in qualitative
agreement with the experimental one. However, the peak energy
of the TKE distribution of the fission fragments is larger than the
experimental result by about 30 MeV and this point is yet to be
clarified.

We also investigated the influence of the potential energy on
the dynamics to understand the result of the mass asymmetric
distribution. We found that the mass asymmetry at the scission
is determined by the dynamics after the saddle rather than the
position of the saddle point. Therefore, we conclude that in or-
der to understand fission modes, the dynamical calculation is
very important.

As a future study, we need the 4-dimensional Langevin cal-
culation taking account of the independent deformation of each
fragment in order to include the deformed shell effect. It is also
necessary to include the change of the nuclear temperature due
to the particle emission. These studies are now under progress.
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