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The Dependency on the Dissipation Tensor of Multi-modal Nuclear Fission

1.  Introduction

In the study of the fission of actinide nuclei at low excitation 
energies including the spontaneous fission, it was found that 
the fragment mass distribution and the total kinetic energy 
(TKE) distribution consist of more than one component, in 
contrast to the simple single peak structure that is found in the 
fission at high excitation energies.1–6  This phenomenon is 
attributed to the existence of more than one fission path and is 
called the multi-modal fission. 

The mass and TKE distributions depend sensitively on the 
excitation energy and the position of the peaks of the mass dis-
tribution suggests the influence of the closed shell structure of 
the fragments.  Therefore, it is supposed that the microscopic 
energy plays an important role for the manifestation of this 
phenomenon.  It is a great challenge for us to understand this 
phenomenon in terms of nuclear many-body dynamics.  Several 
authors studied the potential energy surface (PES) including 
the microscopic energy in a multi-dimensional parameter space 
that describes various nuclear shapes; one can deduce the pos-
sible fission paths by studying the location of the saddle points 
and the fission valleys in multi-dimensional parameter space.7  
With this method, they could explain the general trend of the 
position of the peaks of the mass distribution.  

The dynamical point of view is necessary to progress the 
study of the fission mode.  We have applied the Langevin 
approach to the study of the fission modes in uranium nuclei 
and in fermium nuclei.8–10  We studied the mass and TKE dis-
tributions and demonstrated that we can decompose the fission 
events into several components by tracing the Langevin trajec-
tories.  We also studied the isotope dependence and the excita-
tion energy dependence of the fission mode.8–10  In the previous 
studies, we adopted the wall-and-window type one-body fric-
tion as the dissipation mechanism of the nuclear fission dynam-
ics.  The validity of this dissipation mechanism has been 
demonstrated by one of the authors (T.W.) who studied the dis-
sipation tensor dependence of the pre-scission neutron multi-
plicity and the mean TKE.11–14  From the comparison of the 
results of the dynamical calculation with experimental data, 
they excluded the possibility of the two-body type dissipation 

to be the dominant mechanism by showing that it cannot repro-
duce the pre-scission neutron data and the TKE data simultane-
ously.  On the other hand, they showed that the wall-and-window 
type one-body friction can reproduce both data reasonably well 
and concluded that it is a reasonable model for the dissipation 
mechanism of nuclear fission.  

There are other models that are of one-body nature, e.g.  sur-
face-plus-window formula, modified wall-and-window formula 
and chaos weighted wall formula.15–17  Though there were no 
free parameters in the original derivation of the one-body fric-
tion,18, 19 the strength has been modified frequently in order to 
reproduce some experimental data.  For example, in the study 
of the light particle evaporation and the mass distribution, 
Schmitt et al.  used the strength as a free parameter.17  The 
modification itself should be acceptable when we take account 
of the simplicity of the model; it is a macroscopic model with-
out any microscopic effect and it has no dependence on the 
temperature.  However, when one modifies the strength of the 
nuclear dissipation just to reproduce only one physical quantity, 
it might be inappropriate to conclude that the deduced strength 
has definite physical meanings.  It may reflect the other effects 
completely different from the dissipation, like the insufficiency 
of the model space.  It is very important to compare many (at 
least more than one) physical quantities at the same time.  

Among the physical quantities that are measured in nuclear 
fission, the TKE and mass distributions are well investigated 
experimentally in many cases.  In this study, we use these 
quantities to discuss the dissipation dependence of the fission 
modes.  It is shown that the TKE distribution is, as was 
expected, directly connected to the strength of the dissipation 
and we can put some constraints on the strength of the dissipa-
tion.  Furthermore, it is shown that the mass distribution 
changes rather drastically when one uses different models for 
the dissipation mechanism.  These results demonstrate the 
importance and the usefulness of the dynamical approach to 
the study of the fission mode.  

Section 2 gives a concise description of our framework.  
Results are shown in Sec. 3 concerning the fission of 264Fm 
nucleus at Ex = 20 MeV.  Summary is given in Sec. 4.

2.  Methods

In this study, a multi-dimensional Langevin equation is used 
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to demonstrate the dynamics of multi-modal fission.  It has 
been successfully applied to the study of nuclear dynamics of 
fission and fusion-fission.8–17, 20–23  The time evolution of the 
fission process in the multi-dimensional deformation space is 
traced starting from the ground state of the fissioning nucleus 
via saddle points to various scission configurations.

The multi-dimensional Langevin equation has the following 
form;

dqi

dt
 = (m-1)ij pj ,

dpi

dt
 = 

∂V
∂qi

 – 
1
2

 
∂

∂qi
 (m-1)jk pj pk – γ ij (m-1)jk pk + gij Rj (t),

where the qi denote collective coordinates in the deformation 
space and the pi are the conjugate momenta.  The summation 
from 1 to n over the repeated indices is assumed with n being 
the number of collective degrees of freedom.  In this study, we 
use the distance between the centers of mass of the two future 
fragments RCM, the fragment deformation parameter δ and the 
mass-number of one fragment A1 as three collective variables 
to describe the dynamics of the multi-modal fission.  V(q) is 
the potential energy and mij (q) and γ ij (q) are the shape-depen-
dent collective inertia and dissipation tensors, respectively.  
The normalized random force Ri(t) is assumed to be a white 
noise, i.e., <Ri(t)> = 0, <Ri(t1) Ri(t2)> = 2δ ijδ (t1 − t2).  The 
strength of the random force gij is given by Σkgikgjk = Tγ ij , 
where T is the temperature of the compound nucleus.  The 
hydrodynamical inertia tensor is calculated by means of the 
Werner-Wheeler approximation for the velocity field.24

Two types of the dissipation tensors are used in this study, 
namely the wall-and-window formula and the wall-formula.18, 19  
Both are the so called one-body friction and the difference lays 
in their behavior when the system has a developed neck.  
Figures 1, 2, and 3 show the diagonal components of the two 
dissipation tensors.  Results are shown for the mass-symmetric 
fission of 264Fm with δ = 0.0.  Figure 1 shows the diagonal 
component γ RR as a function of RCM.  It is seen that the wall-
and-window formula gives a smaller γ RR at the saddle region 
(0.5 < RCM < 0.7).  It stays smaller than the wall formulae value 
toward the scission region.  Figure 2 shows the diagonal com-
ponent γ δδ.  Both formulae give essentially the same results.  A 
remarkable difference is seen in Figure 3 that shows the diago-
nal component γAA.  The friction for the mass-asymmetric 
degree of freedom becomes infinitely large in the wall-and-
window formula as the neck radius vanishes.  As we will see 
later, this special feature gives us a very distinct difference in 
the fragment mass distribution.  We also modify the strength of 
the dissipation by introducing the strength parameter ks; 

γ ij
wall–and–window(ks) = ksγ ij

wall–and–window,

γ ij
wall(ks) = ksγ ij

wall.

We take the following values for ks in this study; ks = 1.0, 0.5, 
and 0.25 for the wall-and-window formula (WWF) and ks = 1.0 
and 0.25 for the wall formula (WF).  

Since it is essential for this study to take account of the 
microscopic energy, the potential energy is calculated using the 
macroscopic-microscopic method.  We use TWOCTR of two-
center shell model code to calculate the potential energy sur-
face.25–27  The origin of the potential energy is set so that the 
macroscopic energy for the spherical shape vanishes.  We do 
not take account of the effect of the angular momentum or the 
particle evaporation in this study.  Those who are interested in 
the numerical procedure should read References 8 and 10 and 
the references therein.

3.  Results

As an example, we calculate the fission of  264Fm at the 
excitation energy Ex = 20.0 MeV.  264Fm has a special feature; it 
is divided into two identical doubly-magic fragments 132Sn 
(Z = 50, N = 82).  Though there are no fission experiments 
available for this nucleus, we chose it for our calculation 
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Figure 1.  The diagonal component γ RR of the dissipation tensor with 
δ =0.0 for the mass-symmetric fission of 264Fm calculated with the 
wall-and-window formula (solid squares) and with the wall formula 
(open circles). The abscissa denotes the distance between the centers 
of mass of future fission fragments. R is the radius of the parent 
nucleus.  In both cases, the strength parameter is set to unity.
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Figure 2.  The diagonal component γδδ of the dissipation tensor with 
δ =0.0 for the mass-symmetric fission of 264Fm. The meaning of each 
symbol is the same as that in Figure 1.
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Figure 3.  The diagonal component γ AA of the dissipation tensor with 
δ =0.0 for the mass-symmetric fission of 264Fm. The meaning of each 
symbol is the same as that in Figure 1.
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because of this special feature.  We perform the dynamical 
calculations with WWF dissipation and also with WF dissipa-
tion.

In the previous study of the fission of 264Fm, we showed that 
we can classify the fission events by using the value of the 
deformation parameter δ at scission configuration.8  Figure 4 
shows the distribution of the deformation parameter δ at 
scission configuration.  In the figure, solid squares express the 
results with WWF with ks = 1.0 and open circles express the 
ones with WF with ks = 0.25.  These values of the strength 
parameter ks are recommended in the earlier studies of the 
mean total kinetic energies of the fragments.28  In Figure 4, we 
can clearly see the three-peak structure both in WWF case and 
in WF case.  For example, we decompose the fission events in 
the case of WWF with ks = 1.0 into three components accord-
ing to the value of δ at scission configuration: Component I 
(δ < 0.0), Component II (0.0 < δ < 0.24), and Component III 
(δ > 0.24).  Similar decomposition is made for other cases with 
different strength parameter ks and with different dissipation 
formula.  In general, smaller value of δ means larger value of 
TKE because of the compactness of the scission configuration.  

It was also found in the previous study that Components I and 
III correspond to the mass-symmetric fission and Component 
II to the mass-asymmetric fission.8

Table 1 shows the summary of the calculation with various 
dissipation tensors.  Results are given for the peak value of the 
TKE, <TKE>, that of the fragment mass number, <A1>, and 
the shape elongation β for each of the three modes.  The values 
for <TKE> and <A1> are obtained with the Gaussian fitting of 
the distributions.  The shape elongation β was introduced by 
Zhao et al.  in their systematic study of the TKE in the actinide 
region.29, 30  They assumed that the TKE is equal to the Coulomb 
energy between point charges at the scission configuration and 
they deduced the separation of the point charges D from the 
observed TKE, namely TKE = Z1Z2e2/D.  Then they defined 
the shape elongation at the scission point β = D/(R1+R2), where 
the denominator R1+R2 is the distance between the charge cen-
ters of two touching spherical fragments.  They showed that 
there are mainly two types of scission configurations; a mass-
asymmetric (AH = 140) configuration with β = 1.53 and a mass-
symmetric configuration with β = 1.65.  They also showed that 
the value of β for each mode is almost independent of the mass 
number of the fissioning nucleus.  For the nucleus whose mass 
number is nearly equal to 260, there is an additional mass-sym-
metric compact configuration with β = 1.33.  Since those values 
of β do not vary much with the change of the proton and the 
neutron numbers,29, 30 we assume those values are also applica-
ble to 264Fm.  One easily sees from Table 1 that Component I 
corresponds to the mass-symmetric compact configuration, 
Component II corresponds to the mass-asymmetric configura-
tion, and Component III corresponds to the mass-symmetric 
elongated configuration.  By comparing the values of β in 
Table 1 with the systematic values, we can confirm the validity 
of the suggested value of ks in the sense that <TKE> is repro-
duced well.  It is clearly seen that <TKE> changes significantly 
and becomes larger for all components when we use a smaller 
value of ks that means weaker one-body friction.  Thus it is 
inappropriate to deduce the value of ks from other physical 
quantities without taking account of its effect on the mean 
TKE.

 Next, we compare the results of WWF with that of WF 
more in detail.  Figure 5 shows the TKE distribution for the 
same system as that in Figure 4.  Again, solid squares denote 
the results with WWF (ks = 1.0) and open circles denote the 
ones with WF (ks = 0.25).  It is clearly seen that by using the 
different types of dissipation tensors, we obtain a different 
fraction of contribution from each mode.  It should be noted 
that we do not obtain this kind of change in the fraction of con-
tribution from each mode when we only change the strength 

-0.4 -0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

6

δ

D
ef

or
m

at
io

n 
Y

ie
ld

 [
%

]

Figure 4.  Distribution of the deformation parameter δ at the scission 
configuration for the fission of 264Fm at Ex = 20.0 MeV. Solid squares 
denote the results with the wall-and-window formula (ks = 1.0) and 
open circles the results with the wall formula (ks = 0.25). The sum 
over the distribution is normalized to 100%.

TABLE 1: Peak values of the mass number of one 
fragment, <A1>, and that of the TKE, <TKE>, obtained 
from the Gaussian fitting to each component and the shape 
elongation β  deduced from <A1> and <TKE>.  

Dissipation 
formula

ks
* Fission mode <A1>

<TKE>
(MeV) β

Wall-and-
window

1.00
Component I 131.7 230.6 1.32
Component II 142.5 203.9 1.49
Component III 131.1 181.7 1.68

0.50
Component I 131.5 237.8 1.28
Component II 143.4 212.6 1.42
Component III 131.4 190.5 1.60

0.25
Component I 131.4 244.1 1.25
Component II 142.9 220.1 1.38
Component III 131.1 200.0 1.52

Wall

1.00
Component I 131.5 222.3 1.37
Component II 137.9 196.1 1.55
Component III 131.5 175.5 1.74

0.25
Component I 131.5 234.9 1.30
Component II 139.0 210.3 1.45
Component III 131.4 192.1 1.59

*The second column represents the strength parameter ks. 
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Figure 5.  Distribution of the TKE for the fission of 264Fm at Ex = 
20.0 MeV. The meaning of each symbol is the same as that in Figure 4.
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parameter ks within the same dissipation formula.  The contri-
bution of Component I, the compact mass-symmetric compo-
nent that has the largest TKE, is much larger in WF case than 
that in WWF case.  It should also be noted that we use the same 
potential energy surface in both calculations, that means the 
barrier height for Component I mode is the same in both cases.  
Therefore, we can say that the difference of the contribution 
comes solely as a dynamical effect on the motion from saddle 
region to scission configuration.  In Figure 6, we show the frag-
ment mass distribution for the same system.  It is seen that the 
contribution from the mass-symmetric mode (Component I) is 
much larger in the case of WF which is consistent with the pre-
vious result.  As a result, the mass distribution is much sharper 
for WF than that for WWF.  Thus in principle, we can deter-
mine which model is more appropriate for the description of 
the phenomenon of multi-modal fission by comparing the con-
tribution from each mode with experiments.  This fraction of 
the contribution is, of course, very sensitive to the height of the 
fission barrier for each mode.  So it is necessary to obtain a 
reliable microscopic energy surface before we draw a definite 
conclusion about the model for the nuclear dissipation.

In order to see the origin of the huge difference in the two 
models for the dissipation, we calculate the fission trajectory 
without the random force starting from several points in the 
saddle region.  We take the starting points at RCM/ (2R) = 0.7 
with δ = −0.1, 0.0, 0.1, 0.13, 0.2, and 0.3.  The initial mass 
asymmetry is taken as zero in all cases.  Figure 7 shows the 
results of the calculation without the random force.  It is easily 
seen that even when we start from the same initial point, the 
final scission configuration varies depending on the model for 
the dissipation.  WWF prefers more elongated shapes than WF 
does.  Because of this tendency, it is expected that WF has 
larger contribution from compact scission configuration, i.e.  
WF has larger contribution from Component I.  

This dissipation tensor dependence comes from the differ-
ence in the structure of the dissipation tensors of these two 
models.  A significant difference is seen in the diagonal com-
ponent γAA (Figure 3).  Concerning the mass transfer, both dis-
sipation tensors have the same tendency starting from the 
ground state shape up to the saddle region (RCM/(2R) = 0.7), 
however, after passing this region the two dissipation models 
show completely different aspects.  The component γAA of 
WWF increases inversely proportional to the area of the win-
dow between the fragments, thus it is very difficult for the sys-
tem to change its mass-asymmetry after it passes the saddle 
region when the system has a developed neck.  In Reference 8, 
we studied the potential energy surface of this system in order 
to study the origin the fission modes.  The lowest fission saddle 

(second saddle) lies at a finite mass-asymmetry, the mass-
asymmetry increases first from the ground state to the saddle 
point.  But then in this system, there is a deep mass-symmetric 
fission valley after the saddle region and the mass-asymmetry 
tends to decrease toward the symmetric fission valley.  In the 
case of WF, this mechanism works after the saddle region and 
enhances the contribution of Component I.  On the other hand, 
in the case of WWF, the strong dissipation in mass-asymmetric 
degree of freedom prevents the system to change its mass-
asymmetry.

4.  Summary

We have investigated the dissipation dependence of the 
multi-modal nuclear fission in actinide region.  We have used 
the wall-and-window and the window formula to derive the 
dissipation tensor and have modified the strength with an 
overall factor.  We have calculated the TKE and fragment mass 
distributions for the fission of 264Fm at Ex = 20.0 MeV with 
these dissipation tensors.  By comparing the results with 
different dissipation tensors, we found that the dissipation 
tensor affects not only the TKE distribution but also the frag-
ment mass distribution through the change in the contribution 
of each fission mode.  Although the multi-modal fission phe-
nomenon is often discussed from the static point of view by 
using the potential energy surface, we have shown that the 
dynamical effects of the dissipation tensor play essential roles 
in determining the TKE and mass distributions.  The TKE dis-
tribution is very sensitive to the strength of the dissipation, 
while distinct mass distributions are obtained when we adopt 
different dissipation models.  From the comparison with the 
systematics of the experimental shape elongation β, we suggest 
that the wall-and-window formula with ks = 1.0 can be a rea-
sonable model for the dissipation in fission phenomena.  It is 
desirable to extend the model space to be able to compare the 
calculated mass distribution with experiments more quantita-
tively.  We also plan to adopt the microscopic inertia and dissi-
pation tensors that are based on the linear response theory.27, 31
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