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1.  Introduction

Endohedral fullerenes encapsulating a radionuclide within 
the fullerene cage are of current interest as radiopharmaceuti-
cals for therapy and diagnosis.1–6  To realize these medical pur-
poses, hydrophilic fullerene derivatives, which allow in vivo 
investigations, have to be synthesized.  We synthesized hydro-
philic endohedral 133Xe-fullerenols [133Xe@C60(OH) x and 
133Xe@C70(OH)x]7 which would be applied to the therapy of 
bone cancer, because 133Xe emits β rays with the maximum 
energy of 0.346 MeV and fullerenol is concentrated in bone 
tissues.

For therapeutic purposes, the separation of endohedral 133Xe-
fullerenes from empty fullerenes is necessary, because the 
endohedral 133Xe-fullerene derivatives not containing empty 
fullerenes could effectively concentrate in target tissues.  In the 
previous work, however, we did not succeed in separating 
133Xe@C60 from C60 and 133Xe@C70 from C70.8,9  Recently, we 
produced endohedral higher 133Xe-fullerenes such as 133Xe@C76 
and 133Xe@C84 by implantation of 133Xe ions into C76 and C84 
fullerene targets.  It was easy to separate endohedral higher 
133Xe-fullerenes from empty fullerenes by the high performance 
liquid chromatography (HPLC).10  The present work aims at 
the synthesis of hydrophilic endohedral 133Xe-fullerenols 
[133Xe@C76(OH)x and 133Xe@C84(OH)x] from the endohedral 
higher 133Xe-fullerenes (133Xe@C76 and 133Xe@C84).  To obtain 
optimum conditions of the synthesis, yields of the endohedral 
133Xe-fullerenols are examined as a function of reaction time of 
hydroxylation of carbon atoms in the fullerene cage.  In addi-
tion, the extraction behavior of the endohedral 133Xe-fullerenols 
from o-dichlorobenzene to water phases are investigated.

2.  Experimental

2.1. Production of endohedral higher 133Xe-fullerenes.  
The endohedral higher 133Xe-fullerenes (133Xe@C76 and 
133Xe@C84) were synthesized in a manner as described in detail 
in our previous paper.8  Fullerene targets for ion implantation 
were prepared by vacuum evaporation of fullerenes (C76 or C84) 
on Ni foil.  Xenon-133 ions were implanted into the targets with 
an isotope separator (Takasaki Institute, JAEA) at an accelera-
tion energy of 30 keV.  After the ion implantation, the fuller-
enes on the target foil were dissolved in o-dichlorobenzene.  
The solution was filtered through a membrane filter of 0.2 µm 
in pore size (Millipore, JGWP) to remove insoluble materials.  
The filtrate was purified by HPLC with a Cosmosil Buckyprep 

column of 4.6 mm i.d. × 250 mm long.  The purified solution 
was used to synthesize endohedral 133Xe-fullerenols.

2.2. Synthesis of endohedral higher 133Xe-fullerenols.  
Hydroxylation of endohedral higher 133Xe-fullerenes to 
133Xe@C76(OH) x and 133Xe@C84(OH) x was carried out in a 
manner as described in our previous paper.7  The method com-
prises two processes: hydroxylation and extraction (Figure 1). 

In the hydroxylation process, o-dichlorobenzene solution 
containing 133Xe@C76 or 133Xe@C84 was shaken for 1 min with 
14 M KOH solution containing tetrabutylammonium hydroxide 
(TBAH, 40% in water) in a polypropylene centrifuge tube.  
After shaking, the mixture was centrifuged (9000 rpm, 5 min) 
to form three fractions of o-dichlorobenzene phase, KOH 
phase, and precipitate in between the o-dichlorobenzene and 
KOH phases.  The o-dichlorobenzene and KOH phases were 
separately transferred into another polypropylene centrifuge 
tube, and evacuated in a vacuum desiccator to release gaseous 
133Xe from the solution.  The 133Xe radioactivity in each frac-
tion of the o-dichlorobenzene phase, the KOH phase, and the 
precipitate remaining in the centrifuge tube was measured by 
γ-ray spectrometry with a germanium detector.

In the extraction process, water was added to the o-dichloro-
benzene containing hydroxylated products, and then the mix-
ture was shaken for 1 min to extract 133Xe@C76(OH) x and 
133Xe@C84(OH)x into the water phase.  After centrifugation, 
each fraction was evacuated in a vacuum desiccator to release 
gaseous 133Xe.  The radioactivity of 133Xe in each fraction was 
measured by γ-ray spectrometry.

3.  Results and Discussion

Yields of endohedral 133Xe-fullerenols calculated as a per-
centage of the 133Xe radioactivity extracted into the water phase 
against the initial 133Xe radioactivity of endohedral higher 
133Xe-fullerenes are summarized in Table 1, together with those 
of 133Xe@C60(OH)x and 133Xe@C70(OH)x.7  Here listed are the 
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Figure 1.  A Schematic diagram of a synthetic procedure for 
133Xe@C76(OH)x.  The same procedure was also used for 133Xe@C60 

(OH)x, 133Xe@C70(OH)x, and 133Xe@C84(OH)x.
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yields obtained at 1 min extraction after hydroxylation for 1 
min.  The yield decreases with increasing number of carbon 
atoms in a fullerene, although slight disorder is seen between 
133Xe@C70(OH) x and 133Xe@C76(OH) x.  The yields should 
depend on the number of hydroxyl groups of endohedral 133Xe-
fullerenols synthesized here.

To obtain optimum conditions, the yields of the endohedral 
133Xe-fullerenols were examined as a function of reaction time 
of hydroxylation from 1 to 15 min, the extraction time being 
fixed to 1 min.  As shown in Figure 2, the yield of 133Xe@C60 

(OH)x decreases monotonically with an increase of the reaction 
time, whereas the yields of 133Xe@C70(OH)x, 133Xe@C76(OH)x, 
and 133Xe@C84(OH)x increase up to 7 min and then decrease.  
Here, it is to be noted that the sum of distribution of 133Xe in 
the organic (o-dichlorobenzene) phase and precipitate in the 
hydroxylation process were almost constant, and higher than 
90% irrespective of the reaction time of hydroxylation.  The 
distribution of 133Xe in the aqueous (KOH) phase was about 
5%.  The endohedral 133Xe-fullerenols once produced in the 
organic phase did not migrate to the aqueous phase, suggesting 
that the fullerenols synthesized here should be insoluble in 14 
M KOH solution.  The gaseous 133Xe released from endohedral 
133Xe-fullerenes was about 5% or lower in the present work. 

Changes in the distribution of 133Xe in the organic phase and 
precipitate in the hydroxylation process are shown in Figures 
3(a) and 3(b) as a function of the reaction time of hydroxyl-
ation.  As shown in Figure 3(a), the distributions of 133Xe as 
133Xe@C70(OH)x, 133Xe@C76(OH)x, and 133Xe@C84(OH)x in the 
organic phase are as high as 90% at short reaction time but 
decrease after 7 min.  On the contrary, the distributions of 133Xe 
in the precipitate increase after 7 min as shown in Figure 3(b).  
The fact suggests that endohedral higher 133Xe-fullerenols once 
produced should change to the precipitating species at longer 
time of hydroxylation.  The precipitating species might be a 
hydrophilic endohedral fullerenols insoluble in o-dichloroben-
zene with a large number of hydroxyl groups.

To get an insight into the extraction process, we observed 

changes in the partial yield that was defined as a percentage of 
the endohedral 133Xe-fullerenols extracted into the water phase 
relative to the initial amount of endohedral 133Xe-fullerenols 
produced in the o-dichlorobenzene phase through hydroxyl-
ation.  The partial yields of the endohedral 133Xe-fullerenols 
extracted into the water phase are shown in Figure 4(a) as a 
function of reaction time of hydroxylation, the extraction time 
being fixed to 1 min.  As shown in Figure 4(a), the partial 
yields of 133Xe@C70(OH)x, 133Xe@C76(OH)x, and 133Xe@C84 

(OH)x increase from 20% or less to 40% or more in 7 min and 
then become almost constant thereafter.  In contrast, the distri-
butions of 133Xe in the water-insoluble precipitate (Figure 4(b)) 
are as high as 60–75% for the endohedral higher 133Xe-fullere-
nols synthesized in short-time hydroxylation, and decrease 
gradually to smaller values in 7 min.  They become almost 
constant after 7 min.  In this extraction process, the distribu-
tions of 133Xe in gaseous phase were about 15% or lower, and in 
the organic phase were about 5% or lower.

The increase of the yields of 133Xe@C70(OH)x, 133Xe@C76 

(OH)x, and 133Xe@C84(OH)x up to 7 min (Figure 2) is explained 
as follows.  Endohedral higher 133Xe-fullerenols that are highly 
soluble in o-dichlorobenzene are synthesized through hydrox-
ylation up to 7 min (Figure 3(a)).  These fullerenols with rather 
small number of hydroxyl groups are still hydrophobic and 
insoluble in the water phase at the reaction time of 1 min 
(Figure 4(a)).  According to Li et al.,11 fullerenols with less 
hydroxyl groups than 10 is insoluble in water.  As the reaction 
time increases, the hydroxylation proceeds to afford hydro-
philic species soluble in water.  After 7 min, endohedral 133Xe-
fullerenols with a large number of hydroxyl groups are 

TABLE 1: Yields of endohedral 133Xe-fullerenols through 
hydroxylation for 1 min and extraction for 1 min 

Fullerene species Yield /%

C60 43

C70 18

C76 21

C84 11
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Figure 2.  Yields of endohedral 133Xe-fullerenols as a function of 
reaction time of hydroxylation.  The extraction time is fixed to 1 min.

Figure 3.  (a) Partial yields of endohedral 133Xe-fullerenols obtained 
in the o-dichlorobenzene phase in the hydroxylation process as a 
function of reaction time of hydroxylation.  (b) Distribution of 133Xe 
in precipitate in the hydroxylation process as a function of reaction 
time of hydroxylation. 
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produced.  These fullerenols are hydrophilic and less soluble in 
o-dichlorobenzene, but extracted well in the water phase. 

The monotonic decrease seen in the yield of 133Xe@C60(OH)x 
(Figure 2) is explained by considering that the rate of hydroxyl-
ation to afford hydrophilic 133Xe@C60(OH)x with a large num-
ber of hydroxyl groups would be higher than that of endohedral 
higher 133Xe-fullerenols.  In fact, the par tial yield of 
133Xe@C60(OH) x soluble in o-dichlorobenzene decreased 
monotonically as the hydroxylation reaction proceeded (Figure 
3(a)).  Consequently, the optimum reaction time of hydroxyl-
ation is to be 7 min for 133Xe@C70(OH)x, 133Xe@C76(OH)x, and 
133Xe@C84(OH)x, and that for 133Xe@C60(OH)x is 1 min.

Under the optimum condition, the yields of 133Xe@C60(OH)x, 

133Xe@C70(OH)x, 133Xe@C76(OH)x, and 133Xe@C84(OH)x were 
43%, 34%, 45%, and 26%, respectively.  When we synthesized 
these endohedral 133Xe-fullerenols by using the method of 
Cagle et al.,5 the corresponding yields were as low as 1.2%, 
2.1%, 12%, and 17%.  In addition, most of the encapsulated 
133Xe atoms were found to be released from the fullerene cage 
in the latter case where it took 12 h for hydroxylation.

For medical applications, the stability of 133Xe@C60(OH)x, 
133Xe@C70(OH)x, 133Xe@C76(OH)x, and 133Xe@C84(OH)x syn-
thesized here was examined in saline solution.  When the endo-
hedral 133Xe-fullerenols were stored in 0.9% NaCl at 20 °C, the 
decomposition or release of 133Xe was less than 10% even after 
5 days for every endohedral 133Xe-fullerenol.  The fact suggests 
that the endohedral 133Xe-fullerenol products obtained here 
would be favorable for nuclear medicine.  In particular, the 
medical use of 133Xe@C76(OH)x and 133Xe@C84(OH)x would be 
highly promising because 133Xe@C76 and 133Xe@C84 are easily 
separated from empty fullerenes (C76 and C84) by HPLC before 
the hydroxylation.10
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Figure 4.  (a) Partial yields of endohedral 133Xe-fullerenols extracted 
into water phase as a function of reaction time of hydroxylation.  (b) 
Distribution of 133Xe in precipitate in the extraction process.  The par-
tial yield (a) and the distribution of 133Xe (b) were defined as a per-
centage of the endohedral 133Xe-fullerenols extracted into the water 
phase or in the precipitate relative to the initial amount of endohedral 
133Xe-fullerenols produced in the o-dichlorobenzene phase through 
hydroxylation.




