研究発表要旨

9月28日(月)

1A01~1A08:口頭発表 A 会場(国際会議場)

1A01 固体における高エネルギーイオンのホットアトム化学的過程に関する研究(XIX) -炭素含有ボロン膜に照射した水素同位体の化学的挙動に及ぼすフルエンス依存性-

(静岡大理放射研¹, 核融合研²)○押尾純也¹、鈴木祥子¹、小林 真¹、

倉田理江¹、王 万景¹、芦川直子²、相良明男²、大矢恭久¹、奥野健二¹

【緒言】D-T 核融合炉において、プラズマ中に存在する酸素や炭素等の不純物の除去、及び プラズマへの不純物混入を抑制するため、第一壁においてホウ素(ボロン)を蒸着させるボロニ ゼーションが検討されている。この際、ボロン膜には炭素や酸素等の不純物が混入すること が予想され、さらにプラズマから漏洩した高エネルギーのトリチウムが打ちこまれ、膜内に てトリチウムとボロンおよびその不純物とが相互作用すると考えられる。そのため、膜内に おけるトリチウム滞留挙動を明らかにすることは重要である。そこで、本研究ではボロン膜 中の炭素不純物がトリチウムの化学的挙動に及ぼす影響について、昇温脱離(TDS)法および X 線光電子分光(XPS)法を用いて評価した。

【実験】プラズマ化学気相蒸着 (P-CVD) 法により、ヘリウムで希釈したデカボランガス及びメタンを用いて炭素含有ボロン膜をシリコン基板に成膜した。次に不純物の除去を目的として、1100Kにて 10 分間の加熱処理を行い、XPS 測定を行い炭素含有ボロン膜中の元素組成比を評価した。その後室温において、重水素イオン(D_2^+)照射を、イオンエネルギーを 1.0 keV 、イオンフラックスを 1.0×10¹⁸ D⁺ m² s⁻¹ とし、イオンフルエンスを 0.1×10²² D⁺ m²から 2.0×10²² D⁺ m²の範囲で変化させて行い、再度 XPS 測定を行った。また、重水素の滞留挙動を明らかにするために、昇温速度を 0.5 K s⁻¹、昇温領域を室温から 1100 K において TDS 測定を行った。

【結果・考察】加熱処理後のXPS測定より、炭素含有ボロン膜の元素組成比はボロンが58%、炭素が40%、酸素が2%であった。図にはイオンフルエンスを $0.1 \times 10^{22} \text{ D}^+ \text{m}^{-2}$ から $2.0 \times 10^{22} \text{ D}^+ \text{m}^{-2}$ の範囲で変化させ照射した際の D_2 TDSスペクトルを示す。この結果から、 $0.5 \times 10^{22} \text{ D}^+ \text{m}^{-2}$ から $2.0 \times 10^{22} \text{ D}^+$

なることがわかり、これまでの研究より、低温側か ら、B-D-B結合、B-D結合、B-C-D結合からの重水 素脱離であることと考えられた^[1]。また、 0.1×10^{22} D⁺m⁻²におけるD₂ TDSスペクトルでは950 K付近に のみ脱離ピークが見られ、B-D-B結合、B-D結合か らの脱離に起因するピークは見られなかった。以上 のことより、重水素はボロンよりも炭素により捕捉 されやすいことが示唆された。本発表ではD₂⁺照射 後のXPS測定の結果も踏まえ、より詳細に議論する 予定である。

図 各フルエンスにおける D₂ TDS スペクトル

[1] S.Suzuki et al., J. Nucl. Mater. **390** (2009) 200.

Studies on hot atom chemical behavior of energetic ions in solids(XIX) -Dependence of implantation ion fluence on chemical behavior of energetic hydrogen isotopes implanted into carbon-contained boron films-

OSUO, J., SUZUKI, S., KOBAYASHI, M., KURATA, R., WANG, W., ASHIKAWA, N., SAGARA, A., OYA, Y., OKUNO, K.

固体における高エネルギーイオンのホットアトム化学的過程に関する研究(XX)

1A02 -炭素 - 重水素イオンを同時照射したタングステンにおける重水素滞留挙動 のフルエンス依存性 (静岡大理放射研¹、核融合研²、九大応力研³)

> ○松岡和志¹、鈴木祥子¹、小林 真¹、倉田理江¹、王 万景¹、芦川直子²、相良明男²、 吉田直亮³、大矢恭久¹、奥野健二¹

【緒言】次世代のエネルギー源として重水素とトリチウムを燃料とした核融合発電の実現に向 けた研究が進められている。プラズマ対向機器であるダイバータには炉内の不純物を除去する 役割があり、タングステンおよび炭素繊維複合材(CFC)の併用が考えられている。これらはプ ラズマに直接曝され、高エネルギー粒子によるスパッタリングを受けて、ダイバータ表面のタ ングステン上でタングステン-炭素混合層を形成すると考えられる。また、混合層形成と同時に、 プラズマより漏洩した高エネルギーのトリチウムを含む水素同位体が混合層中に滞留するこ とが予想される。そのため、複合イオン照射環境におけるトリチウム滞留ダイナミックスを理 解する必要がある。本研究では、混合層形成時における水素同位体の捕捉過程を明らかにする ため、タングステンに対し炭素イオン(C⁺)およびトリチウムを模擬した重水素イオン(D₂⁺)を、 種々のフルエンスで同時照射し、昇温脱離(TDS)法及びX線光電子分光(XPS)法を用いて重水素 の化学的挙動について検討した。

【実験】試料にはアライドマテリアル社製タングステン 10 mm[®]×0.5 mm¹を用いた。はじめに不純物除去を目的とした加熱処理を 1173 K にて 10 分間行った。照射条件として C⁺と D₂⁺の打ち込み深さが同じになるように照射エネルギーをそれぞれ 10 keV C⁺および 3.0 keV D₂⁺とし、C⁺のイオンフラックスを 0.2×10¹⁸ C⁺ m⁻² s⁻¹、D₂⁺を 1.0×10¹⁸ D⁺ m⁻² s⁻¹とすることで C⁺/D⁺イオンフラックス比を 0.2 に固定し、イオンフルエンスをそれぞれ(0.2-2.0)×10²¹ C⁺ m⁻²、(0.1-1.0)×10²² D⁺ m⁻²の範囲で変化させ、室温にて C⁺-D₂⁺同時照射を行った。照射した試料の化学状態分析を行うために、X 線源として Al-Ka を用いた XPS 測定を行った後、昇温領域を室温から 1173 K、昇温速度を 0.5 K s⁻¹として TDS 測定を行い、それぞれの結果の比較を行った。

【結果・考察】図に種々のフルエンスにおいて同時照射した際の重水素 TDS スペクトルを示す。

このスペクトルは 3 つの重水素脱離ピークからな ると考えられた。特に 950 K 付近のピークは C-D bond として捕捉された重水素の脱離であり^[1]、この 脱離量は 0.2×10^{21} C⁺ m⁻²、 0.1×10^{22} D⁺ m⁻² から、 1.0×10^{21} C⁺ m⁻²、 0.5×10^{22} D⁺ m⁻² までは増加したが、 それ以上のフルエンスでは減少していた。このこと より、フルエンスが 2.0×10^{21} C⁺ m⁻²、 1.0×10^{22} D⁺ m⁻² においては、炭素による重水素の捕捉よりも、照射 した D₂⁺ による炭素の化学スパッタリングの影響 が大きくなることが考えられた。本発表では XPS 測定の結果も踏まえ、より詳細に議論する予定である。 [1] Y. Oya, *et al., J.Nucl. Mater.***390-391** (2009) 622-625.

D₂TDS スペクトル

Studies on hot atom chemical behavior of energetic ions in solids(XX)-Dependence of ion fluence on deuterium retention behavior in simultaneous deuterium and carbon ions implanted tungsten MATSUOKA, K., SUZUKI, S., KOBAYASHI, M., KURATA, R., WANG, W., ASHIKAWA, N., SAGARA, A., YOSHIDA, N., OYA, Y., OKUNO. K.

固体における高エネルギーイオンのホットアトム化学的過程に関する研究 (XXI)-ステンレス酸化層中における重水素滞留挙動に及ぼす酸化層形成温度 の影響の解明-

(静岡大理放射研¹、原子力機構²) ○鈴木 優斗¹、鈴木 祥子¹、小林 真¹、

倉田 理江¹、王 万景¹、林 巧²、山西 敏彦²、大矢 恭久¹、奥野 健二¹ 【緒言】ステンレス材料(SS316)は重水素(D)とトリチウム(T)を燃料とする D-T 核融合炉の真 空容器や冷却管等に幅広く利用されることが検討されている。実機運転時にトリチウムがス テンレス材料表面および内部に吸着、滞留することが予想される。ステンレス材料表面には 酸化層が形成され、トリチウムを含む水素同位体は主にこの酸化層中に滞留することが知ら れている。また、酸化層の化学状態は酸化層形成時の温度に大きく影響を受けるため、トリ チウム滞留挙動にも大きく影響すると予想される。そこで本研究では、SS316 表面に酸化層 を室温、473 K、673 K の各温度で形成させ、トリチウムを模擬した重水素イオン(D¹₂)を注入 することで、酸化層形成時の試料温度の違いが及ぼす水素同位体滞留挙動の変化について化 学的視点から検討した。

【実験】試料はSS316 板(10×10 mm², 1.0 mm¹)を用い、表面に形成している酸化層を除くため、 不活性ガス雰囲気下 1173 K で 10 分間加熱処理を行った。次に試料温度を室温、473 K、673 K として 1 時間の大気曝露を行い、酸化層を形成させた。室温にて各試料に対し、 D_2^+ を照射 深さが形成した酸化層領域内となるように、エネルギー0.5 keV D_2^+ とし、フラックスを $5.0×10^{17}$ D⁺m⁻² s⁻¹、フルエンスを $5.0×10^{21}$ D⁺m⁻² として照射した。照射前後の酸化層の化学状 態変化を評価するため、 D_2^+ 照射前後に X 線光電子分光(XPS)測定を行い、昇温速度を 0.5 K s⁻¹ として 1273 K まで昇温脱離(TDS)測定を行った。各試料について、Ar⁺スパッタ法を用いた XPS による深さ分析も行い、各酸化層の化学状態を評価した。また加熱処理後、大気曝露し ないことで酸化層を形成させずに同様の実験を行い、酸化層形成試料との比較を行った。

【結果・考察】図に酸化層を形成させた試料、および酸化層を形成していない試料を用いた際の D₂TDS スペクトルを示す。酸化層の無い試料における脱離スペクトルと比較して、酸化層を形成した試料では重水素滞留量が大きく増加することがわかる。また、酸化層形成温度が上昇するに従い、全重水素脱離量および 600-800 K における脱離量が増加した。この 600-800

Kの脱離ピークは、水酸基を形成して滞留した重水素の脱離ピークであることが D₂⁺照射前後の XPSの結果から示唆された。XPSによる深さ方向 分析より打ち込み深さ領域では重水素は主に酸化 鉄と相互作用しており、曝露温度の上昇に従い、 試料中の酸素濃度が増加しているとともに鉄の化 学状態が異なることがわかった。これらの結果か ら、SS316の酸化層における重水素滞留量は、酸 化鉄の化学状態に大きく起因することが考えられ た。本発表においては、曝露温度の変化に伴う酸 化層の化学状態の変化と重水素滞留挙動の相関関 係に関して、より詳細に議論する予定である。

1A03

Studies on hot atom chemical behavior of energetic ions in solids (XXI)

-Elucidation of oxidation temperature effect on deuterium retention in the oxide layer of stainless steel-

SUZUKI, M. 1 , SUZUKI, S. 1 , KOBAYASHI, M. 1 , KURATA, R. 1 , WANG, W. 1 , HAYASHI, T. 2 , YAMANISHI, T. 2 , OYA, Y. 1 , OKUNO, K. 1

1A04 固体における高エネルギーイオンのホットアトム化学的過程に関する研究(XXII) -14 MeV 中性子照射したアルミン酸リチウム中に生成した照射欠陥消滅挙動-(静岡大理・放射研¹、原子力機構²)〇濱田明公子¹、鈴木祥子¹、小林 真¹、倉田理江¹、 王 万景¹、落合謙太郎²、今野 力²、大矢恭久¹、奥野健二¹

【緒言】重水素(D)及びトリチウム(T)を燃料とする D-T 核融合炉において、燃料となるトリ チウムは、⁶Li(n, a)T 及び⁷Li(n, n'a)T の核反応により生成することが考えられており、ブラン ケット材料には固体リチウム酸化物の導入が検討されている。トリチウムの効率的な回収技 術確立の観点から、固体リチウム酸化物中におけるトリチウムの化学的挙動の解明が重要と なる。また、D-T 核融合反応で生成する 14 MeV 中性子により生成した欠陥に、トリチウムが 捕捉されることが考えられる。そこで本研究では、三元系固体トリチウム増殖候補材中で、 化学的安定性が高く、化学的な視点から基礎的な知見を得るのに適しているアルミン酸リチ ウム(LiAlO₂)に対し、14 MeV 中性子照射を行い、試料中に生成した照射欠陥の消滅に伴うト リチウム放出挙動を明らかにするため、電子スピン共鳴(ESR)測定法により照射欠陥消滅挙動 の速度論的な解明を行った。また、照射欠陥生成過程の違いが及ぼす挙動の変化を評価する ため、熱中性子照射における結果と比較検討した。

【実験】試料として LiAlO₂ペブル(0.5 mm^{*})を用い、He 減圧下において 1173 K で 3 時間の加 熱処理後、日本原子力研究開発機構の核融合中性子源施設にて、14 MeV 中性子照射を中性子 フルエンス 6.2×10¹⁴ n cm⁻² で行った。照射試料を ESR 測定セルに真空封入した後、等時加熱 アニーリング実験として、温度領域 297-773 K、温度間隔 25 K とし、各温度で 5 分間加熱し た。各温度におけるアニーリング後、液体窒素温度で ESR 測定を行った。次に、等温加熱ア ニーリング実験として、等時加熱実験の結果より決定した照射欠陥消滅温度領域 400-600 K の中の 5 点で最大 8 時間加熱し、各アニーリング時間での加熱後に ESR 測定を液体窒素温度 にて行った。

【結果・考察】図に 14 MeV 中性子照射前後における LiAlO₂の ESR スペクトルを示す。ESR スペクトルから、照射試料中に、酸素空孔に電子が一つ捕捉された状態の F^+ -center、酸素正 孔中心である O⁻-center 及び O₂⁻-center などの照射欠陥の生成が確認された^[1,2]。等時加熱アニ

ーリング実験の結果、300-500 K で F⁺-center と O⁻center が再結合過程により消滅し、それと同時に、 F⁺-center が動きやすくなることにより F-center 集合 体(FA)の成長が進行した。500 K 以上の温度領域で は FA 及び O₂⁻center がそれぞれ F⁺-center 及び O⁻center に熱分解し、再結合過程を経て消滅に至る と考えられた。また、F⁺-center に捕捉されたトリチ ウムは T⁻の状態で、O⁻center 及び O₂⁻-center に捕捉 されたトリチウムは T⁺の状態で存在することが分 かっており^[3]、照射欠陥の消滅に伴うトリチウムの 化学状態変化・移行過程のモデル化を行った。

図 14 MeV 中性子照射した LiAlO₂および 未照射試料の ESR スペクトル

[1] P. Vadja and F. Beuneu, Phys. Rev. B,53, 5335 (1996).

[2] K. Moritani, I. Takagi and H. Moriyama, J. Nucl. Mater., 325,169(2004).

[3] K. Okuno *et al., J, Nucl. Mater.*, **138**, 32 (1986).

Studies on hot atom chemical behavior of energetic ions in solids (XXII)-Annihilation behavior of irradiation defects generated in 14 MeV neutron-irradiated lithium HAMADA, A., SUZUKI, S., KOBAYASHI, M., KURATA, R., WANG, W., OCHIAI, K., KONNO, C., OYA, Y., OKUNO, K.

1A05 FePSe₃単結晶におけるγ線光量子による電磁波誘起透明化現象の実験的検証 (信州大院教育¹, 信州大教育²)

○中條悟¹, 鈴木寬之², 永田佳奈子¹, 仲神克彦¹, 村松久和²

【はじめに】電磁波誘起透明化現象(EIT)とは、量子状態の重ね合わせと量子干渉を利用して、 共鳴的に吸収されるべき電磁波が、あたかも物質が透明になったかのように物質を透過する現象 である。この現象を利用することによって、従来レーザーに不可欠とされていた反転分布を必要 としないレーザー発振が可能となり、さらにこの現象がγ線で確認できれば、γ線レーザーの開 発が可能になるかもしれない。本研究では EIT と呼ばれる現象をγ線で検証できる系を探し 出すことが目的である。その候補として、実験室で合成可能な FePSe₃の単結晶の合成を試み、 さらに合成して出来た結晶を吸収体に用いることによって、メスバウア共鳴吸収と準位交差 (level crossing)の手法を使って、EIT の検証実験を試みた。

【実 験】Fe、P、Se の粉末を化学量論量はかりとり、メノウ乳鉢を用いてよく混合し、合成の際の高温に耐えることの出来るバイコールガラスに真空封入した。その後電気炉で約1 ヶ月間、840℃で焼成した。冷却は1日40℃ずつ設定温度を下げてゆくことによって行った。 元素分析、X線構造解析を行うとともに、生成物を吸収体として種々の温度でメスバウア効 果の測定を行った。

【結果および考察】右図 1,2 は共に FePSe₃の 27K におけるメスバウア・スペクトルである。外部磁 場(500mT)の存在下で測定された。

FePSe₃は 107K 付近で磁気相転移を起こし反強 磁性体となるが、それと同時に、見かけ上 Q.S.が 大きく変化しているかのような兆候が見られる。 そのため先行研究(既報、2006 年放射化学討論会) では、構造相転移も起こしているのではないか、 という懸念が持たれ、それが原因で EIT が観測で きないものと思われていた。

しかしその後の研究から、この問題が構造相転移によるものではなく、スペクトル解析に内在する問題と考えられたので、高温部分(110K~300K)のデータから外挿した I.S.や Q.S.の値を解析に反映させたところ、図1のように EIT によるものと思われる大きなミスフィットが起こった。

さらに、図1のフィッティングはピーク先端部 の微妙な構造を再現していないため、本来ダブレ ットであるはずのピークの一方に、EIT による'吸 収の欠損'を仮定したところ、図2のように非常に フィットが向上した。

図 2 FePSe₃(27K,500mT)解析 2

現在、図2のような解析の妥当性、解釈、及び 外部磁場の影響を詳しく見るための測定を継続中である。

A proof-of-principle experiment of EIT with gamma radiation in FePSe₃ single crystal NAKAJO, S., SUZUKI, H., NAGATA, K., NAKAGAMI, K., MURAMATSU, H.

1A06 UOS の U-238 メスバウアスペクトルによる研究 (原子力機構¹、東北大・多元研²)〇正木信行¹、中田正美¹、赤堀光雄¹、 荒井康夫¹、中村彰夫¹、佐藤修彰²

【はじめに】 U-238 メスバウア分光法は $I_g=0$ 、 $I_e=2$ の遷移 γ 線を利用しているため、異性体 シフトからは有効な情報が得られないが、四極相互作用および磁気相互作用からの有用な化 学的情報が期待される。30.8K に反強磁性転移温度を持つ UO₂ ではメスバウアスペクトルの 温度変化から反強磁性状態の内部磁場を観測することができた¹⁾。本研究では、U 核につい て構造対称性が低いため四極分裂が期待され、さらに 55K において反強磁性転移をする酸化 硫化ウラン UOS について、メスバウア分光測定により U の化学的情報を得ることを試みた。

【実験】UOS は UO₂を H₂S と 1273K において 1 時間反応させて調製した。UOS は正方晶で、 Uに対して S が 5 配位、O が 4 配位した構造をとる²⁾。 クライオスタット内において、He 冷 凍機 (ダイキン社製 CRYOTEC) により線源、試料ともに冷却した。線源は Pu-242(0.5g、70MBq) の二酸化物で、Pu-242 (半減期 3.733x10⁵y)からの 44.9keV メスバウア γ 線の測定は、Pu-241 (半減期 14.35y)の娘核種である Am-241 からの 59.5keV γ 線を Ge 検出器によって分別して 行った。線源は Wissel 社製 MDU-1200 により正弦波形で駆動し、速度校正は MVC-450 レー ザーシステムにより行った。

【結果】測定は約20Kから5K刻みで反強磁性温度(55K)を越えて行った。図に示したように、いずれの温度のスペクトルにも2つの線幅の広いピークが観測され、55Kを境界にした大きな線形の変化は見られなかった。磁気分裂を考慮しないで四極分裂のみのスペクトルとして解析すると四極分裂 e²qQ/4 として約-40mm/sの値が、いずれの測定温度でも得られた。

図中の実線は、その解析線である。 U核周囲の構造から予想される大 きな四極分裂が観測された一方、 磁気分裂は大きな寄与をしない ようである。これは、UOSの磁気 構造では、Uの磁気モーメントが 回転対称軸であるc軸に沿ってい ることに起因するものかもしれ ない。

References:

S. Tsutsui et al., J. Phys. Soc. Jpn.,
 67 (1998) 2641.

N. Sato et al., J. Alloys Comp.,
 265 (1998) 115.

U-238 Mössbauer spectroscopic study of uranium oxysulfide MASAKI, N., NAKADA, M., AKABORI, M., ARAI, Y., NAKAMURA, A., SATO, N.

1A07 ホスフィンオキシドを配位したランタニド(III)錯体の結晶構造と¹⁵¹Eu および¹⁵⁵Gd メスバウアースペクトル

(東邦大・理)〇高橋 正,平井勇也

【はじめに】 TOPO(トリオクチルホスフィンオキシド)で代表されるホスフィンオキシドは抽 出剤として溶液化学はよく研究されている.比較して結晶状態の化学はそれほど研究されていな いので,ホスフィンオキシド錯体の結晶構造と光物性およびメスバウアー測定を行なった.主と してトリフェニルホスフィンオキシド(TPPO) 錯体を扱って研究をすすめたところ,過塩素酸 イオンがキレートした錯体が得られることがわかった.

【実験】LnX₃·nH₂O (Ln = La, Nd, Eu, Gd, Dy, Yb; X = ClO₄⁻, NO₃⁻)の ROH 溶液に4倍モルの TPPO の ROH 溶液を加え, ROH を蒸発させると錯体が得られた.元素分析等により, Ln(tppo)₄(ClO4)₃·MeOH, Ln(tppo)₂(NO₃)₂·EtOH (Ln = Eu, Gd)とわかった.

¹⁵¹Eu メスバウアー測定:メスバウアー分光器に Wissel 社 MR-260A, MA-260 と DF-500 を使い,線 源に ¹⁵¹SmF₃ (3.7 GBq)を用いて, 試料 (60 mgEu cm⁻²) の温度を 77~290 K の間で変化させて測 定した. Moss Winn を用いて解析し, 異性体シフト (δ_{Eu}) は線源基準で表わした.

 155 Gd メスバウアー測定:自作の線源を用いて,線源(155 Eu/SmPd₃)と試料(80 mgGd cm⁻²)を12 K に冷却しながら,Wissel 社の 1200 駆動システムを使って測定した.線源の駆動速度はレーザ 干渉計で測定した.解析は,5/2-3/2 の遷移について,ローレンツ型関数を用いて行なった. δ_{Gd} は線源基準で表わした.

発光スペクトルおよび励起スペクトル: SPEX Fluorolog-3 を用いて、室温で測定した.

【結果と考察】TPPO 錯体の過塩素酸塩は、Nd~Yb まで同形の錯体が得られた. X 線構造解析 から、錯体の分子の構造は TPPO₄ 分子と 2 分子の ClO₄-が対称的にキレートした 8 配位十二面体 型構造であることがわかった. 過塩素酸イオンは非配位性のイオンとして知られ、配位した例は 余り知られていない. Eu-O(ClO₄)は平均 2.549 Å であり、TPPO との距離 2.283 Å よりもかなり 長い. これはそれほど強く配位していないことを示しているが、メタノール溶液の ESI-MS を測 ったところメタノール溶液中でも過塩素酸イオンの配位は保持されることがわかった. 水を加え ると過塩素酸イオンが水と交換した. トリエチルホスフィンオキシド(TEPO) でも同構造の錯 体[Eu(tepo)₄(η^2 -ClO₄)₂]ClO₄ が得られ、構造を確認した. 硝酸塩は、NO₃-がキレートした 9 配位錯 体[Ln(tppo)₂(η^2 -NO₃)₃(EtOH)]であった.

これらの Eu 錯体はジクロロメタン溶液中で、紫外光により ${}^{7}F_{n} \leftarrow {}^{5}D_{0}$ の赤色の発光をすること を確認した.フェニル基あるいは P=O のアンテナ効果により効率よく紫外光で励起されている. 硝酸錯体では ${}^{7}F_{0}$ への発光が非常に弱く、過塩素酸塩に比べて配位環境の対称性が高いことが示 唆された. Dy 錯体でも同様に ${}^{6}H_{n} \leftarrow {}^{4}F_{9/2}$ による黄緑色の発光が観測された.

Eu 錯体の過塩素酸塩(Eu-A と標記)および硝酸塩(Eu-B と標記)の77 K での¹⁵¹Eu メスバ ウアーパラメータは、 δ_{Eu} 、四極結合定数 $e^2 q Q_{Eu}$ の順に、0.20、5.36 mm s⁻¹ (Eu-A)、0.30、3.68 mm s⁻¹ (Eu-B)であった. δ_{Eu} の値は、Eu-A は 8 配位としては小さめであるが、妥当な値であった。Gd-A と Gd-B の¹⁵⁵Gd メスバウアーパラメータは δ_{Gd} 、 $e^2 q Q_{Gd}$ の順に、0.67、6.63 (Gd-A)、0.61、1.99 (Gd-B) であった. $e^2 q Q$ の値から、Eu、Gd 両錯体の EFG V_{zz} を求めると、Eu-A と Gd-A は 3.37×10²¹、3.66×10²¹ V m⁻² とほぼ一致するのに、Eu-B と Gd-B は 2.32×10²¹、1.10×10²¹ V m⁻² と差が見られた。

Crystal structures, and ¹⁵¹Eu and ¹⁵⁵Gd Mössbauer spectra of lanthanide complexes with phosphine oxides: TAKAHASHI, M., HIRAI, Y.

1A08 {TcO3}コアを用いた生体分子標識のための構造、速度論的研究 1A08 (Univ Zuriab lange landitute) ○きいちー A こいいのブラバン

(Univ. Zurich Inorg. Institute) ○遠山有二、ヘンリックブラバンド、 ロジャーアルベルト

【はじめに】基礎および応用化学への寄与が期待できるテクネチウム錯体の研究例は、テク ネチウムに安定同位体が存在しないため、他の金属錯体の研究例と比べて少ない。本研究室 では、新規高酸化テクネチウム7価錯体、[(L)TcO₃](L:三座配位子)の合成ならびにフルキャラ クタリゼーションに成功した。本発表では、[(L)TcO₃]と種種のアルケンとの反応により得ら れたテクネチウム5価錯体、[(L)TcO(glycolate derivatives)]のフルキャラクタリゼーション、な らびに反応機構について報告する。

【実験】 [(L)TcO₃]と種種のアルケンを 1:1 の割合で水またはアセトニトリル中で攪拌し溶 媒を除去、得られた錯体を再結晶により精製し、IR, NMR,単結晶構造解析によりキャラク タリゼーションを行った。また反応メカニズムを解明するため、テクネチウムの 10 倍量のア ルケン溶液に、[(L)TcO₃]錯体を加え、UV-Vis スペクトルの測定を行い、反応速度定数(k)なら びに活性化エネルギーを算出した。

【結果と考察】 [(tpzm*)TcO₃]⁺ (tpzm* : tris(3,5-dimethyl-1H-pyrazol-1-yl)methane)と (1R,4S)-bicyclo[2.2.1]hept-2-eneの反応により得られた5価錯体の構造をFig.1に示す。tpzm*がテ クネチウムに配位しており、(1R,4S)-bicyclo[2.2.1]hept-2-eneの二重結合が[(tpzm*)TcO₃]⁺の二つ の酸素原子と反応しジオールを生成していることが分かる。3つの配位窒素原子のうち、ター ミナル酸素原子のトランスにあるTc1-N1の結合距離が他のテクネチウム-窒素原子結合距離 に比べ約0.2Å長い。これは、ターミナル酸素原子のトランス影響によるものと考えられる。 一方、UV-Visスペクトルより算出したln[Tc^{VII}]と時間(s)のプロットをFig.2に示す。Fig.2のプロ ットがほぼ直線状であることより、この反応は[(L)TcO3]に対して擬一次反応で進行している ことが分かる。さらに、Eyring plotより活性化エンタルピー(44 kJmol⁻¹)及びエントロピー(-114 e.u.)を求めた。正のエンタルピーより反応が発熱反応であること、負のエントロピーより反 応は会合機構を伴うことが示唆された。同様の方法で、アミノ酸、カルボキシル基、ヒドロ キシル基などを含む種種のアルケンと反応させ20℃での反応速度定数をもとめた。その結果、 $k = 0.047 \sim 46 M^{-1}s^{-1}$ とアルケンによって反応速度定数は、大きく異なることが確認された。 これは、共役系、超共役系によるアルケンの反応性、立体障害に起因するものと推測される。 これらの基礎データをバックグランドに、生体分子のひとつであるグルコースにアルケンを 導入し、[(tacn)TcO₃]⁺(tacn: 1,4,7-triazonane)と反応を試みた。反応は予想どおり穏やかに進み、 ^{99g}Tcのみならず^{99m}Tcにおいても類似した結果が得られた。

 Fig.1 Crystal structure of [(tpzm*)TcO(bicyclo[2.2.1]heptane-2,3-diolate)]
 Fig.2 The plot of the In[TcVII] vs Time(s)

 Structural and kinetic investigations for the labeling of biomolecules with the {TcO₃}-core
 Y. Tooyama, H. Braband and Roger Alberto

加速器質量分析 (AMS) セッション 9月28日 (月)

1A09~1A12:依頼講演 A会場(国際会議場)

1A13~1A18:一般講演 A会場(国際会議場)

1A09 加速器質量分析と地球環境における同位体システム (東大院工)〇松崎浩之

加速器質量分析は、特に長半減期の放射性同位体(¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ¹²⁹I など)の検出 に優れる。これらの核種は、宇宙線と物質との相互作用によって生成することから、しばし ば「宇宙線生成核種」(CRNs = Cosmogenic Radio Nuclides)と呼ばれる。大気中で生成した宇 宙線生成核種は、物質循環によって運ばれ、地上にあまねく降下する。宇宙線生成核種の生 成率は、宇宙線の強度に依存する。一方、それは、地球環境変動や気候変動を考える上では 重要なパラメーターである、地磁気強度と太陽活動によって変化する。したがって、過去の 宇宙線生成核種の生成量を記録した試料(アイスコアや堆積物など)は、古環境研究にとっ て重要である。

最近では、地球表層プロセスを調べるために、宇宙線が直接地表の岩石中に生成する核種(in situ CRNs)もよく利用される。In situ CRNsのAMSのターゲットとして代表的なものは、¹⁰Beと²⁶Al であるが、その濃度や深度分布は、地表面の露出時間や侵食速度などの情報を持っている。これらのデータは、単に局所的な地表の履歴を示すだけでなく、地域的な気候条件を知る重要なてがかりともなる。

人類の核エネルギーの利用(核実験、原子力発電)により、¹⁴C, ³⁶Cl, ¹²⁹I などの核種が人 為的に生成される。こうした核種も物質動態の新しいトレーサーとなっている。¹²⁹I を例にと ると、今日人為起源の¹²⁹I によって、地球表層の¹²⁹I/¹²⁷I 比は pre-anthropogenic の時代に比べ て数桁上がっており、またその値は、表面の条件やヨウ素の動態によって空間的・時間的に 極めて大きく変動する。したがって、人為起源の¹²⁹I は、元素としてのヨウ素の動きを示し ている。また、ヨウ素は、有機物と親和性が高いことから、¹²⁹I が、炭素循環の新たな側面を 明らかにするための鍵となるのではないか、と期待されている。

加速器質量分析で測定可能なこれらの同位体は、その存在度(安定同位体との同位体比) が極めて低く、他の手法での検出が困難である。したがって、加速器質量分析によって地球 環境中に、まったく新しい同位体システムを見出すことが可能であり、このことによって、 地球環境科学の分野で独自の貢献をしているといえる。

Accelerator Mass Spectrometry and isotope system in earth environment MATSUZAKI, H.

1A10加速器質量分析(AMS)による Cl-36 の測定とその応用
(筑波大・応用加速器) 〇笹 公和

【はじめに】 長半減期核種の ³⁶Cl (T_{1/2}=301 kyr)は、主として 2 次宇宙線と大気中の ⁴⁰Ar との 核破砕反応によって生成される。全球平均生成率は~20 atoms m⁻² s⁻¹程度と見積もられている (J. Masarik, 1999)。成層圏および対流圏で生成された ³⁶Cl は比較的短時間でよく混合し、海塩 起源の塩素とともに湿性あるいは乾性降下物として地表に降下する。自然界の ³⁶Cl/Cl 同位体 比は 10⁻¹³ から 10⁻¹⁴程度であり、海水では 10⁻¹⁵以下である。³⁶Cl は中性子捕獲反応 ³⁵Cl(n, γ)³⁶Cl 等により、核実験や原子力関連施設などでも生成される。特に 1950 年代の海洋核実験により、 ³⁶Cl は大量に生成されている(H. A. Synal, 1990)。塩素は海洋や陸域に広く分布しており、³⁶Cl は長半減期核種の有用な環境トレーサーとして、その利用が急速に進展しつつある。

【³⁶Cl-AMS 測定】加速器質量分析(AMS)による ³⁶Cl の測定では、同重体である ³⁶S (存在度 0.02%)が妨害因子となるため、硫黄の多い試料は試料処理の段階で硫黄をできる限り取り除 く必要がある。測定用試料としては、1~5 mg 程度の AgCl が用いられる。³⁶Cl の AMS 測定 では、³⁶S との分離識別の為に、一般的に 5 MV 以上のタンデム静電加速器が用いられる。世 界では 10 施設程度が ³⁶Cl の AMS 測定を実施しており、国内では東京大学 MALT (5MV)と筑 波大学 AMS システム (12MV)において ³⁶Cl の AMS 測定が可能となっている。東京大学 MALT では、ガス充填型電磁石を用いて AMS 測定を実施しており (T. Aze, 2007)、筑波大学 AMS シ ステムでは、³⁶Cl を 100 MeV まで加速し、ガス及び半導体検出器からなるΔE-E検出器により 計測をおこなっている (K. Sasa, 2007)。筑波大学 AMS システムの ³⁶Cl 検出感度は、³⁶Cl/Cl 同位体比で~10⁻¹⁵であり、測定精度は 3%となっている。2008 年に ³⁶Cl 測定が可能な世界の 8 施設が参加して、³⁶Cl-AMS 測定の研究室間比較検定が実施された (S. Merchel, 2009)。各 AMS 施設の ³⁶Cl-AMS 測定の現況と研究室間比較検定の結果について紹介する。

【³⁶Cl-AMSの応用研究】³⁶Clは、環境トレーサーとして地球環境科学分野での応用研究が活発に進められている。地下水や土壌、大気循環のトレーサーとしての研究や核廃棄物関連研究にも応用されている。地下水の滞留時間の推定では、長半減期を利用して非常に規模の大きな帯水層における数十万年オーダーの地下水の年代測定に用いられてきた(H. W. Bentley, 1986 and Y. Mahara, 2007)。また、³Hの代替として、核実験起源パルスを利用した数十年オーダーの新しい地下水への適用も進展している(Y. Tosaki, 2008)。³⁶Cl は石灰岩の溶食速度の定量や隕石の宇宙線照射年代、落下年代の推定にも利用されている。氷床コア研究においては、³⁶Cl の放射壊変を利用したコア年代の推定及び過去の気候変動や宇宙線変動の研究にも適用が進んでいる。その他、広島・長崎原爆被ばく線量評価システム DS-02の検証(M. Hoshi, 2008)や JCO 臨界事故における中性子線量推定(R. Seki, 2003)などにも利用されている。また、放射線発生施設の遮蔽コンクリート中の³⁶Cl 測定により、クリアランスレベル評価や中性子積算線量を推定する試みもおこなわれている(K. Bessho, 2006)。本発表では、これらの³⁶Cl を用いた応用研究例についても紹介をおこなう予定である。

筑波大学の³⁶Cl研究の一部は、文部科学省原子力基礎基盤戦略研究イニシアティブにより 実施された「極微量放射性核種 AMS による原子力施設環境モニタリング研究」の成果である。

Accelerator mass spectrometry of ³⁶Cl and its applications SASA, K.

·· (学習院大理¹、東大院工²) ○村松康行¹、伊藤絵理佳¹、遠山知亜紀¹、松崎 浩之²

【はじめに】 ヨウ素-129(半減期:1570万年)は消滅核種として知られるが、現在でも宇宙線と大気中のXeとの反応やUの自発核分裂などにより極微量ながら生成されている。海水中では¹²⁹Iと安定ヨウ素(¹²⁷I)は均一に混ざり、その比はほぼ一定(¹²⁹I/¹²⁷I比:1.5x10⁻¹²)に保たれていると推定される。そのため、海水から堆積する(叉は堆積物中に閉じこめられる)と、新しい¹²⁹Iが供給されず、¹²⁹I/¹²⁷I比は半減期に従い減少する。そこで、試料中の¹²⁹I/¹²⁷I比を正確に測ることにより、ヨウ素が海水から分離された年代を推定できる。また、この核種は人工的にも生成されており、核実験や原子力施設(再処理施設)の稼働により環境中に加わっている。そのため、¹²⁹Iは地球化学および環境科学の視点から興味が持たれている。

以前我々は、放射化分析法を用い環境試料中の¹²⁹Iの微量分析を行った。しかし、表層土 壌などレベルが高い試料については測定できても、自然界の値に近い濃度は検出限界以下で あった。そこで、AMSの分析に適した試料からのヨウ素の分離法を検討して、分析を行った。

【実験】AMS 用のターゲット(AgI 沈殿)を作成するために、まずは、試料からのヨウ素の分離 を検討した。ヨウ素濃度の高い鹹水試料については、直接、溶媒抽出法でヨウ素を分離した後、 ヨウ化銀を加え AgI 沈殿を作成した。固体試料(土壌など)については、石英管の中で 1000℃に 加熱し、揮発したヨウ素をアルカリ溶液でトラップした。安定ヨウ素濃度の測定は、トラップ溶 液の一部を用い ICP-MS で分析した。残りのトラップ溶液に既知量の Γをキャリア(2mg)として 加えた後、鹹水と同様、溶媒抽出法で分離し、AgI ターゲットを作成した。AMS 測定に関しては Matsuzaki et al. (2007, 2008)に従った。

【結果及び考察】 分析に関しては、AMS 法を用いることにより¹²⁹I/¹²⁷I 比として 5x10⁻¹⁴程 度まで測定できることが分かった。この値は、放射化分析よりも4~5桁ほど感度がすぐれ ている。土壌試料などではヨウ素のキャリアーを加えるので検出感度は上記の値よりは少し 落ちるが、¹²⁹I/¹²⁷I 比として 1x10⁻¹¹(又は濃度として 0.01 mBq/kg 程度)まで測定できた。検 討した方法を用い、環境試料や地球化学的試料の分析を実施した。

地球化学的試料としては、ヨウ素を高濃度に含む地下鹹水や流体が日本列島の各地で産出 することから、それらに含まれる¹²⁹I/¹²⁹I 比を測定した。千葉県、東京都、埼玉県などで採取 した上総層群の試料では、¹²⁹I/¹²⁷I 比として 1.7x10⁻¹³前後の値が得られた。この値からヨウ素 が蓄積した年代を推定したところ 4900 万年前であった。これは、鹹水が存在する地層よりも かなり古く、ヨウ素に富んだ流体が移動してきたと推定した。また、その他の地域(宮崎県、 新潟県、群馬県、北海道など)で採取した試料についても分析を行ったので、それらの結果 についても報告し、起源についても考察する。

環境試料としては、土壌を中心に¹²⁹Iの濃度分析を行った。その結果、我が国の土壌中の ¹²⁹I濃度は、0.01 - 180mBq/kg⁻¹と幅広い範囲にあり、そのうち東海村の再処理施設周辺土壌な どに含まれる¹²⁹Iは高い傾向にあった。森林は樹冠に大気からヨウ素が沈着しそれが降雨な どに流され土壌に加わるため、森林土壌の方が畑地などに比べ¹²⁹I濃度が高かった。また、 深度分布を調べたところ、表層 10cm以内にほとんどの¹²⁹Iが蓄積していた。また、チェルノ ブイリ地域で採取した土壌中の¹²⁹Iを分析し、事故により放出されたが半減期が短いため測 定データが少なかった¹³¹Iの濃度推定を行い、被曝線量再構築の可能性を検討した。

Analysis of I-129 by AMS and its application to environmental sciences and geochemistry MURAMATSU, Y., ITO, E., TOYAMA, C., MATSUZAKI, H.

考古研究と¹⁴C:現状とこれからの課題 1A12

(国立歴史民俗博物館¹、パレオ・ラボ(株)²、名大年代セ³) ○今村峯雄¹、 坂本稔¹、尾嵜大真²、宮田佳樹³

【はじめに】今世紀に入って¹⁴C 年代法のパフォーマンスと精度は格段に向上し、考古学 への応用が考古学研究者の中にも広がりつつある。精度±0.2-0.4%(炭素年代換算で±16-32 ¹⁴C 年)での定常測定が、年数千/装置の規模で一般的に行われるようになっている。ここで は、AMS 法による¹⁴C 測定と考古学研究の現状を展望し、将来に向けた新たな課題について考 えてみたい。

【考古学と AMS-¹⁴C 測定】「考古学研究に於いて最も重要且つ殆ど最終の目的とせらるゝものは、その資料の時代決定なり」というのは、浜田耕作による古典的名著『通論考古学』(1922)における言であるが、これは¹⁴C 年代測定法が考古学において果たしうる役割と可能性を示すものである。¹⁴C 年代法は、これまで主に先史時代の考古学に貢献してきた。一方、今世紀における AMS 法のパフォーマンスと測定精度の向上は、年代較正法の進歩と相まって歴史時代を含む研究にも広がり始め、応用研究はあらたな段階に入ったと考えられる。

【AMS による¹⁴C 測定の現状】AMS 装置を有する世界の 70 ほどの施設のほとんどで¹⁴C 測定 が行われていると推測される。上述したように現在、精度±0.2-0.4%での定常測定が、年2 ~3千/装置の規模で一般的に行われ、一部には、1 回の計数が 10⁶に達し実測で 0.12%(± 10 炭素年に相当)の再現性を実現している。試料炭素量の極小化も多くの研究者が取り組ん でいる課題である。通常は1 mg の炭素量が標準であるが、0.1mg さらにそれ以下での測定報 告も増加しつつある。

一方、測定値の絶対値については測定機関間で測定精度を超える違いがしばしば報告され る。測定値の品質管理が問われる所以であるが、一方で、国際的に多数の測定機関が参加し て共通の試料について前処理を含めて測定し、結果の比較検討を行なう取り組みが行われて いる。データの信頼性を比較チェックすることが可能になり、問題や課題を抽出するチャン スとなる。濃度の異なる複数の標準試料の結果を同時に得て、データの信頼性のチェックを 行うことは、利用者側でも行なわれる品質管理の1方法である。

【¹⁴C 年代測定と較正曲線】¹⁴C 年代測定法では、測定で得られた試料の¹⁴C 濃度を、較正 曲線(キャリブレーションカーブ)で較正して実年代を得る。較正曲線は年輪年代法で暦年 を特定した古木等の年輪資料を用いて、その¹⁴C 濃度を測定して得られる。現在北半球に対 して一般に用いられる IntCal04 は、過去 2.6 万年の¹⁴C 年代や大気¹⁴C 濃度の変動(1950 年 相当の大気濃度に対する偏差値、Δ¹⁴C)を与える。過去 12000 年の部分は、欧米の木材で測 られたデータ、それ以前についてはサンゴや海洋年編堆積物から得られたものである。なお、 海洋に対しては Marine04 のデータセットが大気データとモデル計算から与えられている。

【較正曲線と地域効果、年変動】較正曲線は、北半球の範囲では統一的に用いることがで きると考えられてきたが、歴博における研究からその濃度が有意に(数十炭素年)上記の IntCal04からはずれる時期があることが判明し、新たな取り組みが必要であることが示唆さ れる。過去1万年の大気¹⁴C濃度の変動は、地磁気の長期変動と太陽活動による宇宙線強度 の変化と考えられているが、気候変動の影響もマイナーな効果として存在するようである。 なお、11年周期の太陽活動による濃度変化は、約3‰の振幅をもっているが、較正曲線では、 こうした短周期の変動は隠されている。それは、IntCal04においては10年または20年の平 均値としての大気¹⁴C濃度の変動が与えられているからである。通常の精度での年代測定に はこの影響は小さいが、今後測定精度が高くなると考慮しなければならない要素である。

【高精度・高確度の年代決定法:¹⁴C ウィグルマッチ法】

¹⁴C年代法の1つのテクニックとして wiggle-matching 法がある。較正曲線の年変化の凸凹 特性-wiggle-を利用するもので、たとえば木材試料のように数十年の年輪層があれば、年 輪ごとの¹⁴C濃度が暦年較正曲線の wiggle に一致する年代をベイズ統計で絞り込む。条件を 適切に選べば、測定誤差±数年~十数年での歴年代決定が可能である。

¹⁴Cウィグルマッチ法はIntCal04が10年単位のデータとして提供されるようになった2005 年以後威力を発揮し始めたといえよう。すなわち、年輪年代が不可能な広葉樹や小試料(辺材 を持つ)に適用できるようになった結果、年代精度の必要な歴史関連資料に有効になった。こ の¹⁴Cウィグルマッチ法による測定例はわれわれの関係する測定に限っても数十に達する。

【年代測定の高度化に向けた課題】歴博では、縄文時代・弥生時代に使われた各土器型式の使用期間(文化編年)を統計的に解析判定することで、考古学編年から実年代への転換を行ない、新しい縄文・弥生の年代観を提示してきた。これらの研究における年代測定の対象は、おもに出土物である。歴史的な建築木材環境からの汚染は問題とならないが、出土物ではそれをどう評価するかが重要となる。また、試料によっては同じ時代のものが異なった¹⁴C 濃度を示す。たとえば、動物の骨コラーゲンは種による違いがみられることがあり、食物連鎖の違いが海洋などのリザーバーの差を反映していることを示唆した。

歴博では、木材・炭化材・炭化種子のほかに土器に着いたスス・焦げを主な試料とした。 木材や炭化材の年代測定には長い歴史があり、洗浄法が確立しているが、スス・焦げについ ては研究例が少なかったことから、多くのデータを分析しその統計的妥当性を検証した。例 えば、木材・木炭・漆など他の共伴遺物の測定値との整合性などである。

今後取り組む必要がある重要課題として、日本産樹木の地域効果の精密測定とともに、年 単位での¹⁴Cデータ整備がある。試料の¹⁴Cの変動パターンがどの太陽活動サイクルに一致す るかを判定することで、誤差±3年程度での歴年代決定が可能であると考える。

【おわりに】¹⁴C年代測定法は考古学に多くの実りをもたらすことになった一方で、新しい知見は旧来の「学説」と食い違いを見せることも多く、¹⁴C批判がしばしば繰り返されてきた。 その中には、年代測定に伴う統計現象への無理解も含まれる。年代測定では、個々の「測定値」にかかわる誤差のほかに、測定対象物と目的事象に関わる不確定性(枯死年と事象の関係など)があるほか、考古学資料のもつ固有の不確定性("共伴"と「モンテリウス則」、資料と文化事象の関係など)が存在する。考古学と自然科学を総合し統計的に分析解釈する視点が重要である。また、粘り強い研究とともに学際的な協力関係が肝要である。

Archaeology and ¹⁴C: Present status and issues IMAMURA, M., SAKAMOTO, M., OZAKI, M., MIYATA,Y.

1A13 過去 10 年間の大気中 ⁷Be, ¹⁰Be 濃度, ¹⁰Be/⁷Be と太陽活動の関係

(日大院・総合基¹、福岡県保健環境研究所、日大・文理²、東大院・工学系)
 〇山形武靖¹、楢崎幸範²、池田佑一郎³、永井尚生³、松崎浩之⁴

【はじめに】大気中における⁷Be (T_{1/2}=53.3d) と¹⁰Be (T_{1/2}=1.36×10⁶y)の生成速度は大気の深 さに対して指数関数的に減少しているため,成層圏で全体の 2/3 が,対流圏で 1/3 が生成して いる。生成速度は宇宙線強度に依存するため,太陽活動の 11 年周期とともに変動しているが, ¹⁰Be/⁷Be 生成速度比はほぼ一定であると考えられる。生成後は酸化され,エアロゾルに吸着し 移動する。エアロゾルの平均滞留時間が 1-2 年と ⁷Be の半減期より長い成層圏では ¹⁰Be が蓄 積する一方であるのに対し, ⁷Be は蓄積すると同時に壊変により減少するため成層圏の ⁷Be, ¹⁰Be 濃度, ¹⁰Be/⁷Be は高くなっている。北半球では春期に成層圏-対流圏の交換が起きるため, 地表付近の ⁷Be, ¹⁰Be 濃度, ¹⁰Be/⁷Be が高くなる。大気中 ⁷Be 濃度の永年変動は宇宙線強度の変 動の影響を受けているとされているが,成層圏-対流圏の交換速度が毎年変化している場合, 宇宙線強度の変動と異なる変動パターンを示す可能性も考えられる。本研究では東京,八丈 島,太宰府において 1998-2008 年まで ⁷Be, ¹⁰Be 濃度の観測を行い,濃度と ¹⁰Be/⁷Be の変動と太 陽活動の関係について考察を行った。

【実験】試料は福岡県太宰府市の福岡県環境保健環境研究所と八丈島の八丈島灯台,東京都 世田谷区の日本大学においてハイボリュームエアサンプラーを用いてろ紙に回収したエアロ ゾルを用いた。回収した試料はまず γ 線スペクトロメトリーを行い⁷Be (E_y=477.6 keV)の定量 を行った。測定後,ろ紙の 1/4 に Be 担体 0.5 mg を添加し分解液をろ過を行った。ろ液から陽 イオン交換カラムを用いて Be を単離した。回収した Be を BeO として東京大学 MALT にお いて¹⁰Be-AMS を行った。

【結果】太宰府, 八丈島, 東京の大気中 ⁷Be, ¹⁰Be 濃度はほぼ一致した。大気中 ⁷Be, ¹⁰Be 濃度 は毎年 3-6 月と 10-11 月に高く, 7-8 月に低くなる季節変動を示した。¹⁰Be/⁷Be は 3-6 月に高く なる季節変動を示した。大気中 ⁷Be, ¹⁰Be 濃度は強い季節変動を持つため, 一年を成層圏から

の影響がある年前半 (1-6 月)と無い年後半 (7-12 月)に分け 平均し,太陽活動と比較すると,⁷Be 濃度は年前半,後半共に 太陽活動と同様の変動パターンを示したが,¹⁰Be 濃度は年前 半がほぼ一定で,年後半は太陽活動と同じ変動パターンを 示した。¹⁰Be/⁷Be は年前半と後半で変動パターンが大きく異 なり,年前半は太陽活動の1-2年遅れの変動パターンを示し, 年後半はほぼ一定であった。

生成速度が宇宙線強度に比例して変化する 2 ボックスモ デルを用いて大気中¹⁰Be/⁷Be を求め,観測した結果と比較 した。その結果,エアロゾルの平均滞留時間は成層圏で2年, 対流圏で33日であり,成層圏-対流圏の大気交換の時期と交 換速度は毎年ほぼ一定で,2-6月にその他の時期より約3倍 になると算出できた。また生成速度は地表で観測された宇 宙線強度の変動量の4倍変動することがわかった。これは Masaril and Beer(1999)が見積もった変動量と同等であった。

Fig. 1 The decadal variations of ⁷Be, ¹⁰Be concentration and ¹⁰Be/⁷Be in the atmosphere in Dazaifu, Hachijo-Island and Tokyo during 1998 to 2008.

Correlation between the concentrations of cosmogenic Be isotopes in atmosphere and solar activities. YAMAGATA, T., NARAZAKI, Y., IKEDA, Y., NAGAI, H., MATSUZAKI, H.,

AMS を用いた土壌中の³⁶Cl/Cl 同位体比 1A14

(筑波大院数物・筑波大 AMS グループ[#]、東大 MALT^{\$}、KEK[®]) 玉理美智子、○末木啓介、天野孝洋、笹公和、高橋努[#]、松四雄騎^{\$},戸崎裕貴[#], 大木俊征[#],長島泰夫[#],木下哲一[#],松村宏[®],別所光太郎[®]

【はじめに】 長半減期核種³⁶CI は宇宙線が大気中の Ar と核反応を起こして生成する。しか し、1952-1958 年の間に水上核実験によって大量の³⁶CI が生成した。この核実験起源の³⁶CI は地球科学研究の良いトレーサーとなっている。我々は表層土壌中から希硝酸によって抽出 される成分中の塩化物イオンを取り出して、その中の塩素同位体比³⁶CI/CI に注目した。その 同位体比の地域差および深度分布について詳細なデータを得て、核実験起源の³⁶CI の影響の 度合いや環境中の塩素循環に関するトレーサー利用の可能性などを含めて検討した。

【実験】 日本列島の等緯度地域(37°20'N~37°30'N)において,日本海側から太平洋側に かけて6サイト合計27地点で土壌を採取した。土壌試料の処理操作には改良した方法を用い た¹⁾。土壌試料は、120℃で乾燥し、フルイによって不純物を除去した後、希硝酸で塩素を 抽出し,活性炭で溶解性有機物を吸着除去した。最後に過酸化水素により溶存有機物を完全 に分解した後に、一般的な AMS 試料調整法にしたがって AgCl 塩とした。筑波大学タンデム 加速器の AMS 装置により³⁶Cl/Cl 同位体比を測定した。

【結果・考察】 全 27 地点の表層土壌および 3 地点の 1 m 土壌コア (5 cm または 10 cm の 深度区画)の³⁶Cl/Cl 同位体比、¹³⁷Cs 濃度および強熱減量(LOI)の結果を得た。27 地点の表層(約 2-6 cm)における³⁶Cl/Cl 同位体比の測定値は 0.1×10⁻¹³から 3.7×10⁻¹³の幅広い範囲を示した。サイトによる差異としては日本海側の KK サイトにおいて全体に低い値が得られた。ただし、次の深度分布で表されるように表面から 20-30 cm の深度までの分布はその場所によ

って異なるため表面から 6 cm までの ³⁶Cl/C 同 位体比を単純に比較することができない。1 m までのコア試料から KK-9, KK-12, AB-1 の 3 地 点での深度分布が得られた。図(B)にはそのうち の KK-12 と AB-1 を示す。 KK-9 は日本海の海 岸の試料で 0.1×10-13 で1 m までほとんど変化 が観測されなかった。それに対して、KK-12は 10-15 cm の深度で 1.7×10⁻¹³ と最大を示し、深 くなるほど同位体比は小さくなった。AB-1 は 0-5 cm で最大を示し、同位体比は 3.7×10⁻¹³ で、 30 cm までは下がっていくが、それ以深 100 cm まではほぼ一定の値を示した。これらの結果か ら土壌中の塩化物中の同位体比は場所によっ て異なる傾向を示すことが分かった。また、図 (A)には現在の宇宙線による³⁶Cl の生成量と海 岸からの距離による降下塩素量を仮定して求め たそれぞれの場所における同位体比を示した。

Figure Depth profiles of ³⁶Cl/Cl in KK-12 and AB-1, predicted ³⁶Cl/Cl in rainwater and observed ³⁶Cl/Cl in

snow at KK site.

1) 玉理ら、第52回放射化学討論会 1P06、広島(2008).

Isotope ratios of ³⁶Cl/Cl in soils by AMS

TAMARI, M., SUEKI, K., AMANO, T., SASA, K., TAKAHASHI, T., MATSUSHI, Y., TOSAKI, Y., OKI, T., NAGASHIMA, Y., KINOSHITA, T., MATSUMURA, H., BESSHO, K.

1A15 ^{日本海盆及び大和海盆における¹²⁹Iの分布}

(原子力機構・環境動態¹、中央水研・海洋放射能²)○鈴木崇史¹、皆川昌幸²、 外川織彦¹

【はじめに】

日本海は海水中の溶存酸素量の減少や海水温の上昇など地球温暖化の影響に対して鋭敏に 反応する海域であることが知られているが、海水循環構造等不明な点が多い。また日本海の 海水は約100-200年で入れ替わるといわれており、原子力利用による放射性核種の放出期間 (約60年)がこの時間スケールと近いことから、これらの放射性核種は日本海海水循環を解 明する上で有用なトレーサーであると考えられる。さらに¹²⁹Iや¹⁴Cは加速器質量分析装置を 用いることにより、供試料量が非常に少なく短時間で測定することが可能なため特に有用で あると考えられる。そこで本研究では日本海における、日本海盆及び大和海盆中の¹²⁹I及び ¹⁴Cを測定することにより、日本海底層水における海水の循環構造について議論する。

【実験】

2007 年 7 月に中央水研所属の蒼鷹丸(SY07)にて日本海盆(41°00 N, 138°00 E)と大和海盆 (38°30 N, 135°00 E)で¹²⁹I 及び¹⁴C 用の海水試料を採取した。また 2007 年 11 月に北海道大学所 属のおしょろ丸(OS07)にて日本海盆(41°10 N, 137°40 E)と大和海盆(38°30 N, 135°30 E)で ¹²⁹I 用の海水試料を採取した。¹²⁹I 及び¹⁴C はそれぞれヨウ化銀及びグラファイトとして抽出 後、日本原子力研究開発機構青森研究開発センターに設置してある加速器質量分析装置によ って測定した。

【結果および考察】

図1に水深1000m以下における日本海盆及び大和海盆におけるヨウ素同位体比(¹²⁹I/¹²⁷I)の鉛直分布を示す。海水温の測定結果から日本海盆及び大和海盆における日本海底層水はそ

れぞれ水深 2500 m 及び 2200 m 以下であった。こ の水深以下では ¹²⁹I/¹²⁷I の分布は両海盆とも鉛直 方向に一定値を示し、日本海底層水は鉛直方向に 均一な水塊であることが分かる。日本海盆及び大 和海盆における ¹²⁹I/¹²⁷I はそれぞれ(6.7 ± 0.1)× 10^{-12} 及び(9.2 ± 0.1)× 10^{-12} を示し、海盆毎に濃度が 異なることが分かった。この結果から日本海底層 水は鉛直方向には均一であるが、海盆により各種 の濃度差が存在することが明らかになった。この 濃度差は日本海底層水が表面海水の沈み込みによ り形成される際持っていた海水中の ¹²⁹I/¹²⁷I を反 映していると考えられる。¹²⁹I は原子力利用に伴い

環境中に放出され、表面海水中の¹²⁹I/¹²⁷I は年々高くなってきているので底層水中の¹²⁹I/¹²⁷I は濃度が高いほど新しい海水であると考えられる。すなわち今回得られた結果からは大和海 盆は日本海盆より新しい海水であると考えられる。これは日本海底層水が大和海盆から日本 海盆に流れているとする流速計からの結果(Senjyu *et al.*, 2005)と一致している。以上のことか ら¹²⁹I は日本海底層水の循環を考える上で有用なトレーサーであると考えられ、より広範囲 な調査を行うことで日本海底層水の詳細な循環構造を解明できる可能性がある。

The distribution of ¹²⁹I in the Japan Basin and Yamato Basin SUZUKI, T., MINAKAWA, M., TOGAWA, O.

1A16 石質隕石中の³⁶CI 生成率(II)

 ● (首都大院理工¹, 筑波大², 東大³, 高工ネ研⁴) ○浜中芳文¹, 大浦泰嗣¹, 海 老原充¹, 笹公和², 長島泰夫², 高橋努², 戸崎裕貴², 松四雄騎³, 玉理美智子², 天野孝洋², 末木啓介², 別所光太郎⁴, 木下哲一²

【はじめに】 隕石中に含まれている宇宙線生成核種は, 隕石の照射年代や落下年代といった 年代測定や,地球に落下する前の大きさの推定などに用いられている.宇宙線生成核種の 1 つである ³⁶Cl(半減期 30万年)は,金属相中では主に Fe や Niの核破砕反応によって生成さ れ,特に南極隕石の落下年代測定に用いられている.また,ケイ酸塩相中では Fe と Niのほ かにも K や Ca などの核破砕反応や,³⁵Clの中性子捕獲反応によっても生成される.陽子に よる核破砕反応の ³⁶Cl 生成励起関数は標的元素ごとに系統的に変化しているため, (n, γ)反応 も含めて隕石中での各元素からの ³⁶Cl 生成率を求めることで,宇宙線照射環境について深く 議論できると考えられる.そこで我々は過去に 2 つの石質隕石中での元素あたりの ³⁶Cl 生成 率を求めた[1].試料によって ³⁶Cl 生成率が異なることを期待したが,得られた生成率はほぼ 同じであったため,今回,新たな隕石試料を用いて,各標的元素での ³⁶Cl 生成率を推定した ので報告する.

【実験】 Gold Basin 隕石(L コンドライト)を2 断片と, Gao 隕石(H コンドライト)1 断片を砕いて粉末状にし,磁石でケイ酸塩相と金属相に分離した.得られたケイ酸塩相はさらに硝酸で処理することにより酸可溶相と不溶相に分けて,各試料で6つの相を得た.これらの³⁶Cl 濃度を筑波大学タンデム型加速器を用いた加速器質量分析法により定量した.また,標的元 素濃度を3 種類の放射化分析法により定量した.

【結果】 どの隕石断片でも、ケイ酸塩の硝酸可溶相で³⁶Cl 濃度が最も高くなり、以前に分析 した Allegan や Barwell 隕石とは異なった傾向を示した. Welten et al.[2]は、Gold Basin 隕石 15 断片中の宇宙線生成核種濃度を報告しているが、今回定量した³⁶Cl 濃度はそれらと同様の傾

向を示した. Welten et al.はモデル計算も用 いて,核破砕反応と中性子捕獲反応からの 寄与をそれぞれ推定した.本研究では³⁶Cl が寄与の大きな Cl, (K + Ca), (Fe + Ni)の元 素群からのみ生成されると仮定して,初め て実験値のみから生成率を推定した.得ら れた³⁶Cl 生成率は,Welten et al.による核破 砕反応と中性子捕獲反応の相関とほぼ一致 した(図 1).よって,本法による生成率の推 定値は妥当であると考えられる. (n, γ)に よる寄与が系統的に少し高くなっている様 でもあるが,本法により得られる³⁶Cl 生成 率の値は,Cl 濃度に大きく依存するので, より正確な Cl 濃度を求める必要がある.

[1] 大浦 他, 第 51 回放射化学討論会 1A09 (2007)

[2] K.C.Welten et al., Meteor. Planet. Sci. 38, 157-173 (2003)

Production rate of 36 Cl in chondritic meteorites (II)

HAMANAKA, Y., OURA, Y., EBIHARA, M., SASA, K., NAGASHIMA, Y., TAKAHASHI, T., TOSAKI, Y., MATSUSHI, Y., TAMARI, M., AMANO, T., SUEKI, K., BESSHO, K., KINOSHITA, N.

p核 Sm-146 の AMS 測定

(¹ 筑波大加速器, ²Hebrew Univ., ³Univ. of Notre Dame, ⁴Argonne National Laboratory,
 ⁵TANDAR Laboratory, ⁶Univ. Libre de Bruxelles, ⁷Northwestern Univ., ⁸ 東大海洋研,
 ⁹ 阪大院理, ¹⁰ 東北大多元研, ¹¹ 東北大核理研, ¹² 金沢大理工学域)

○木下哲一¹, M. Paul², G. Feinberg², H. Nassar², P. Collon³, Y. Kashiv³, D. Robertson³, C. Schmitt³, X. D. Tang³, C. Deibel⁴, B. DiGiovine⁴, J. P. Greene⁴, D. J. Henderson⁴, C. L. Jiang⁴, B. Kay⁴, H. Y. Lee⁴, S. T. Marley⁴, R. C. Pardo⁴, N. Patel⁴, K. E. Rehm⁴, R. Scott⁴, R. Vondrasek⁴, M. Notani⁴, J. M. Figueira⁵, S. Goriely⁶, L. Jisonna⁷, 天川裕史⁸, 高橋成人⁹, 三頭聰明¹⁰, 大槻勤¹¹, 廣瀬健太郎¹¹, 中西孝¹², 横山明彦¹²

サマリウム-146($T_{1/2}$ =1.03×10⁸ yr)はpプロセスで元素合成される核種のひとつで、娘核種の¹⁴²Ndの同位体比異常の測定より太陽系誕生時の存在量が知られている。Sm-146の半減期は太陽系初期に存在していた¹⁴⁶Sm を元素合成することになったイベント等に関する年代を考える上で非常に

重要である。我々のグループは天然に存在する放射性 核種¹⁴⁷Sm から¹⁴⁶Sm を製造し、¹⁴⁶Sm の半減期を ¹⁴⁶Sm/¹⁴⁷Sm 原子数比と放射能比、¹⁴⁷Sm の半減期の積 より計算することを計画した。αスペクトロメトリー により¹⁴⁶Sm/¹⁴⁷Sm 放射能比を定量し、東大海洋研の 表面電離型質量分析計を用いて測定を試みたところ、 天然に存在する¹⁴⁶Nd の妨害が見られ、Argonne National Laboratory にて加速器質量分析を行った。

金属状態に還元した Sm を ECR イオン源に挿入し、 ¹⁴⁶Sm²²⁺を超伝導ライナックで 750 MeV にまで加速、 ガス充填電磁石(Fig. 1)を用いて ¹⁴⁶Nd と ¹⁴⁶Sm を分離 し軌道の違いを位置検出器(PPAC)で測定、更にその後 方に配置された電離箱を用いて dE/dx 測定を行った (Fig. 2)。またその一方でビームを ¹⁴⁷Sm²²⁺に切り替え 新たに加速し、ガス充填電磁石の手前のファラデーカ ップで ¹⁴⁷Sm²²⁺の電流値を測定し、2 つの測定より ¹⁴⁶Sm/¹⁴⁷Sm 原子数比を導出した。しかしながら、この AMS では標準がないために 2 つの異なるイオンのイ オン源から検出器までの輸送効率、ガス充填電磁石内 の輸送効率、ビームの不純物に配慮した測定をする必 要がある。測定の結果、これらの影響は小さいことが 分かった。加速器質量分析の手法が確立され、Sm-146 の半減期が求まりつつある。

X position along focal plane / Channel

AMS measurement of p-nuclei Sm-146

KINOSHITA, N., PAUL, M., FERINBERG, G., NASSAR, H., COLLON, P., KASHIV, Y., ROBERTSON, D., SCHMITT, C., TANG, X.D., DEIBEL, C., DIGIOVINE, B., GREENE, J.P., HENDERSON, D.J., JIANG, C.L., KAY, B., LEE, H.Y., MARLEY, S.T., PARDO, R.C., PATEL, N., REHM, K.E., SCOTT, R., VONDRASEK, R., NOTANI, M., FIGUEIRA, J.M., GORIELY, S., JISONNA, L., AMAKAWA, H., TAKAHASHI, N., MITSUGASHIRA, T., OHTSUKI, T., HIROSE, K., NAKANISHI, T., YOKOYAMA, A.

1A18

バイオマス由来度測定法の標準化可能性について

(バイオインダストリー協会¹、北大院・農学研究院²)〇大島一史¹、木村俊範²、輿石 君子1

【はじめに】 バイオ燃料、バイオ化学品(エチレン、プロパンジオール、コハク酸、乳酸な ど)、バイオ化成品(界面活性剤やインク原料など)、さらにプラスチック(酢酸セルロース やポリ乳酸、また近未来にはポリオレフィンや PET も)など、原料(の一部)に化石資源か ら生物資源(バイオマス, BM)を使用する素材が開発され、単独で、あるいは多種多様な有 機物/無機物と複合化されて日常品として登場してきた。中でもバイオ燃料はその普及が低 炭素型社会への移行や石油節約などの観点から税制上の優遇措置がとられ、国がその普及を

率先している。これら素材の見か け・品質は石油由来品との識別が 困難であり、正しい普及を計るた めにはその BM 由来を科学的に 担保する公平な仕組みの構築が 望ましいことから、放射性炭素測 定法の標準化可能性について調 査した((財) JKAの機械工業振 興事業補助金の交付を受けて行う

(財)機械システム振興協会の (財)バイオインダストリー協会への委 託による事業として実施)。

【実験】BM 由来成分を含む 各種素材(約30種)中の¹⁴C含 量を加速器質量分析法(AMS)及 び液体シンチレーション法(LSC) で計測して BM 由来度を評価する分 析法の標準化可能性を、米国材料試 験法 (ASTM D 6866; CO₂ あるいは C₆H₆ へ変換した LSC 法/CO₂ 化へ変 換した AMS 法) との対比の上で調 査・検討した。

【結果】バイオ燃料など液状系に ついては物質変換することなく LSC 法が、また BM 由来プラスチックな ど固体系資材ではグラファイト化し た AMS 法が実用性に富んでいるこ

標準化が可能であり、その工業規格化(JIS化)/国際標準化(ISO化)を国に提案し、現在その先 導研究(フィージビリティスタディ)を進めている。

On the Possibility of Standardization of Analysis Method of "Bio-Degree" of the Biomass-based Materials OHSHIMA, K., KIMURA, T., KOSHIISHI, K.

研究発表要旨

9月28日(月)

1B01~1B19:口頭発表 B会場 (会議室2)

1B01 超重元素化学実験に向けたサマリウム共沈α線源作成法の開発 (理研・仁科セ)○笠松良崇、羽場宏光、江崎豊

これまでの超重元素の化学的研究は、その生成率の低さと寿命の短さから1原子を対象と せざるをえず、主に迅速な多数回の交換反応を伴うクロマトグラフ研究に限られてきた。気 相系と液相系の化学実験が104-108番元素、112番元素などを対象として行われ、結果として、 112番元素までが d 軌道の価電子をもつ遷移金属元素に属することが報告されている。しかし、 化学的性質の詳細な研究はまだこれからである。近年、108番元素、Hs (ハッシウム)を対 象とした画期的な実験結果が報告された[1,2]。これは、Hs が MO4の化合物となって揮発する という8族元素特有の性質を持つことを確認した実験であり[1]、さらに揮発した化合物が水 酸化ナトリウムと反応すると固体表面に固着することをも確認した[2]。これは、簡潔ゆえに 明確にHs の化学的性質(周期表中の属性)を調べ、化学種までをも示唆することができた結 果である。本研究は、世界でも初となる超重元素の沈澱を作成し、錯形成等をも議論するこ とを目的としており、Hs の研究のように、新らしく、そして簡潔な化学実験手法を確立する ことにより、明確な超重元素の化学的性質を調べるものである。

超重元素の化学実験では、短寿命の核種が対象となるため、加速器で合成された生成核をガス ジェット気流を利用して迅速に化学室に搬送し、化学処理を施す。本研究では、加速器で生成し た核反応生成物であるマルチトレーサーを実際の超重元素実験と同様にガスジェットで化学室へ 迅速搬送したものを用いて迅速な沈殿線源の作成法の開発を行った。ANODISC (whatman) とい うアルミナを利用した濾紙上に前もって薄く均一に Sm の水酸化物沈澱を敷いておき、その上に ガスジェットを一定時間吹き付け、その後 Sm を含んだ塩基性溶液を上から流して吸引濾過する ことで沈澱線源を作成した。その後、沈澱線源の放射能 (α線とγ線)を測定して収率等を求め た。単純に固体表面上にガスジェットを吹き付けただけでは、エアロゾル (KCl)の蓄積とともに α線測定におけるエネルギー分解能が悪くなるのに対して、本手法で作成した試料は高分解能を 維持できることが分かった。その上、各元素の化学的性質に依存した収率の差を観測することが できた。これは、化学的性質が未知である超重元素の沈澱に関する性質を本手法で調べることが できることを示唆している。

水酸化物沈澱線源作成実験は、加速器オンライン実験だけでなく、マルチトレーサー溶液を用 いた通常の手法でも行った。アンモニア水や 0.1-6 M 水酸化ナトリウム水溶液などを用いて水酸 化物沈澱を作成し、沈殿の収率の変化を観測し、各元素の水酸化物沈澱の性質を調べた。また、 104 番元素の Rf(ラザホージウム)を第一の研究対象と定め、同じ4族元素である Zr と Hf の放 射性トレーサー⁸⁸Zr、¹⁷⁵Hf を用いて水酸化物沈澱を作成、その収率を測定することにより、Rf の 実験条件を検討した。

[1] Ch. E. Düllmann et al., Nature 418, 859 (2002).

[2] A. von Zweidorf et al., Radiochim. Acta 92, 855 (2004).

Application of the rapid α source preparation method, samarium hydroxide coprecipitation method, to superheavy element chemistry KASAMATSU, Y., HABA, H., EZAKI, Y.

1B02 Dbを模擬した5族元素 NbならびにTaのオンライン等温ガスクロマトグラフ挙動 (原子力機構先端基礎研究セ¹, 理研仁科セ²)〇佐藤哲也¹,塚田和明¹,浅井雅人¹, 豊嶋厚史¹,笠松良崇²,李子杰¹,佐藤望¹,菊池貴宏¹,永目諭一郎¹

超アクチノイド元素ドブニウム(Db, Z=105)の化学的性質を明らかにするため、Db 化合物の等温ガス クロマトグラフ挙動を調べることを目的に、オンライン気相化学分離装置の開発を行っている。Db の 模擬として Nb および Ta の短寿命核種を用い、開発した装置における 5 族元素の等温ガスクロマト グラフ挙動を確かめた。

実験は原子力機構タンデム加速器実験施設で行った。Nb および Ta の短寿命核種として、^{nat}Gd(¹⁹F, xn)および ^{nat}Ge(¹⁹F, xn)反応により合成した ⁸⁸Nb および ¹⁷⁰Ta を用いた。

実験装置は反応室、石英製等温カラムおよびガスジェット槽から構成され、核反応槽に直結されている。核反応生成物は、反跳によって標的より核反応槽内に飛び出し、キャリアガス流により反応室に輸送される。運ばれた核反応生成物は、反応室に導入されている反応ガスと混合されて揮発性化合物を形成し、等温カラムへと運ばれる。反応ガスとしてはSOCl2飽和乾燥空気を用いた。等温カラムでは、化合物の揮発性に応じて分離が行われる。カラム末端に到達した揮発性化合物は、He/KClガスジェット搬送法により測定系へと運ばれ、放射能測定が行われる。等温カラム温度に対する収率の変化から、対象化合物の揮発性について知ることができる。

はじめに、カラム温度を揮発性化合物が通過す るのに十分高温な 400 ℃に固定し、キャリアガス 流量、反応室温度および反応ガス流量について 実験条件の最適化をおこなった。得られた最適 条件は、He キャリアガス流量 0.75 L/min,反応 室温度 500 ℃,反応ガス流量 200 mL/min(Air) であり、反応効率は約 90%だった。

この条件下で、観測したカラム温度に対する収 率の変化を図1に示す。Nbの挙動は、Türlerら によって報告された傾向とよく一致した[1]。揮発 性化合物としてオキシ塩化物生成が見込まれる 条件下において、Ta 化合物の分離挙動は本研 究で初めて観測され、その揮発性は Nb>Ta で 図1. Nb および Ta のカラム温度-収率曲線。反応

あることがわかった。この傾向は、Nb および Ta オキシ塩化物の昇華温度の関係と一致する。

[1] A. Türler et al., Radiochim. Acta 73 (1996) 55.

図 1. Nb および Ta のカラム温度-収率曲線。反応 室温度 500℃, He キャリアガス流量 0.75 L/ min, Air/SOCl2 200 mL/min (Air).

On-line isothermal gas chromatographic behavior of group 5 elements Nb and Ta as homologues of Db

SATO, T. K., TSUKADA, K., ASAI, M., TOYOSHIMA, A., KASAMATSU, Y., LI, Z., SATO, N., KIKUCHI, T., NAGAME, Y.

1B03 気相化学分離された化合物の搬送に関する研究 (新潟大理¹ 機器分析セ² 原子力機構³) 〇村山裕史¹

(新潟大理¹、機器分析セ²、原子力機構³)○村山裕史¹、後藤真一²、工藤久昭¹、 塚田和明³、浅井雅人³、豊嶋厚史³、佐藤哲也³、永目諭一郎³

【はじめに】 超重元素の化学的性質を調べる実験手法の一つに,目的元素の揮発性化合物を 生成しカラム表面との吸着・脱離の挙動を調べる気相化学分離法があり、当研究室では,こ れまで4族元素(Zr,Hf および Rf)塩化物を対象とした実験を行ってきた。Rf のような超重元素 のほとんどは短寿命のアルファ放射体であるため、同定・定量のためには等温カラムを通過 した揮発性化合物を検出部に迅速かつ効率よく再搬送しなくてはならない。しかし、これま で再搬送条件に関する詳細な報告はなされていない。そこで、本研究では揮発性化合物に対 する再搬送装置を開発し、最適な搬送条件を得ることを目的に実験を行った。

【実験】 Fig.1 に気相化学実験装置の概略図を示す。加速器による実験の前に²⁵²Cfを用いた off-line実験を行った。²⁵²Cfからの自発核分裂生成物はカーボンクラスターにより反応部へ搬 送される。そこで生成した揮発性化合物は等温部を通過したのちリクラスタチェンバー内で エアロゾルに付着し、再搬送される。再搬送された核種の同定・定量はリクラスターチェン バーから約 1m下流の捕集部にてHPGe検出器によりガンマ線スペクトロメトリにより行った。 エアロゾルは、均一にチェンバー内に流れ込むよう 4 箇所からチェンバー内に導入した。直 径 40mmのリクラスタチェンバーは長さを 50,100,150 mmと変えることで体積を変えられる ようにした。キャリヤガスの種類と流量、エアロゾルの種類、リクラスタチェンバー体積な どを変化させ、核分裂生成物の再搬送効率を求めた。

Fig.1 気相化学実験装置概略図

【結果】off-line実験では、塩化水素により揮発性化合物を生成する核種のうちγ線スペクト ル中でピークが見やすい¹⁰¹Tc,¹⁰⁴Tc,¹⁰⁷Rhについて、再搬送条件を検討した。再搬送効率は、等 温部の直後で冷却捕集した際の放射能に対する、リクラスターチェンバー下流の捕集部での 放射能の比とした。その結果、キャリヤガスはHeよりN₂を使用したほうが再搬送効率は高く なった。エアロゾルをKCl、キャリヤガスをN₂、ガス流量 1.4 L/min、リクラスターチェンバ ーの長さ 50 mmのとき、再搬送効率は約 40%となった。講演では詳細な実験結果について報 告する。

Research on transportation of chemical compounds after gas phase chemistry MURAYAMA, H.,GOTO, S., KUDO, H.,NAGATA, K., ASAI, M.,TOYOSIMA, A.,SATO, T.,NAGAME, Y.

1B04

レーザーイオン化質量分析法の気相化学分離法への適用 (新潟大院自然¹、新潟大機器分析セ²新潟大理³) 〇茂野雄太¹、後藤真一²、工藤久昭³

【緒言】

超アクチノイド元素の化学的性質は、軌道電子に対する相対論効果の増大により同族元素の 化学的性質の傾向から逸脱する可能性が示されている。超アクチノイド元素の化学的性質を調 べるための手法の一つに気相化学分離法があり、これまで当研究室では多くの金属と揮発性錯 体を形成する dipyvaloylmethane (DPM, *M*=184.23) を用いた研究を行ってきた。しかし、化学的 性質を議論するためには生成した揮発性化合物の化学形を明らかにすることが求められてい た。

本研究では、揮発性化合物をなるべく分解させず、選択性の高い、波長可変レーザーを用いた共鳴多光子イオン化 (REMPI) 質量分析法の適用について検討を行っている。

【実験】

イオンチェンバーを用いた以前の研究により、DPM 由来イオン強度のレーザー波長依存性が確

認されている。そこで REMPI により生成するイオン 種を明らかにするために質量分析を行った。

60 ℃に加温した DPM を He ガスでバブリングし、 REMPI 用に改造した二重収束型質量分析器内のイオ ン源へと導入した。REMPI には YAG レーザー励起色 素レーザー (LDS698)の第二高調波(330~360 nm)を用 いた。DPM のイオン化エネルギーは 7.9 eV であるの で、二光子共鳴一光子イオン化が起こると考えられる。

測定は任意の m/z のイオン強度をイオン検出器で測 定する。また、イオンを生成した際のレーザー強度も 同時にモニターできるようにした。

【結果と考察】

右図は波長 320.0 nm のレーザーにより DPM をイオン化させ、そのフラグメントイオンである m/z= 57 についてある一定のレーザー強度に対するイオン強度を測定した結果である。レーザー強度を大きくしていくと(range1→2→3)、イオン検出器からのシグナルも

対応して大きくなっていくことが確認できた。このようにして イオン強度のレーザーパワー依存性を調べることでイオン化

図. レーザー強度スペクトル(上)及び 任意のレーザー強度におけるイオン 強度分布(下)

が REMPI によるものかどうか判断できると考えられる。講演では他フラグメントイオンの結果などについて発表する予定である。

Application of laser ionization mass spectroscopy for gas phase chemistry SHIGENO, Y., GOTO, S., KUDO, H.

1B05 HF/HNO₃水溶液系における 105 番元素 Db の陰イオン交換挙動

(原子力機構・先端基礎研究セ¹、理研・仁科セ²、首都大院・理工³、阪大院・理⁴、新潟大・理⁵、金沢大院・自然科学⁶、金沢大・理工⁷)〇笠松良崇^{1,2}、豊嶋厚史¹、浅井雅人¹、塚田和明¹、Li Zi jie¹、石井康雄¹、佐藤哲也¹、西中一朗¹、菊池貴宏¹、羽場宏光²、工藤祐生²、佐藤望^{1,2}、大浦泰嗣³、秋山和彦³、大江一弘⁴、藤沢弘幸⁴、篠原厚⁴、後藤真一⁵、工藤久昭⁵、荒木幹夫⁶、西川 恵⁶、横山明彦⁷、永目諭一郎¹

原子番号が104番以上の超アクチノイド元素(超重元素)は、第7周期の6d遷移金属元素 に相当することが最近分かってきており、その化学的性質の解明に大きな興味が寄せられて いる。日本原子力研究開発機構(原子力機構)では、これまでに104番元素Rfのフッ化物錯 形成をイオン交換法によって詳細に調べることに成功している[1]。そして、そのフッ化物錯 形成の様子が同族元素とは大きく異なっていることが分かった。6d遷移金属元素のフッ化物 錯形成の系統的研究を進め、超アクチノイド元素の化学的性質の理解をより深めるために、 我々はより重い105番元素(Db、ドブニウム)へと研究対象を拡げている。先行研究では、 14 M HF 中でのDbの陰イオン交換挙動を調べ、同族元素とは異なる挙動を観測した[2]。本 研究では、HF/HNO3 混酸を用いて希薄なフッ化物イオン濃度条件下でのDb の陰イオン交換 実験を行い、そのフッ化物錯形成の様子を調べた。

原子力機構のタンデム加速器を利用した²⁴⁸Cm(¹⁹F, 5*n*)²⁶²Db 反応により 105 番元素²⁶²Db(半 減期:34秒)を合成した。合成した核種を迅速に化学室へガスジェット搬送し、オンライン 迅速イオン交換・α線検出装置(AIDA-II)を用いて HF/HNO₃ 水溶液系での陰イオン交換挙 動を調べた。同族元素である Nb ならびに Ta の陰イオン交換挙動も、より多様な水溶液濃度

条件下で調べ、その結果を基に Db のイオン交換反応における *K*d値を求めた。得られた結果の一部を同族元素である Nb, Ta ならびに Paの結果とともに Fig. 1 に示す。

今回の実験で得られた Db の K_d値が、周期 表上で最も近い同族元素 Ta (第6周期)の値 よりも小さく、より軽い同族元素の Nb や擬同 族元素である Pa の値に近いことが分かった。 本発表では、これらの結果から Db のフッ化物 錯形成、及び陰イオン交換樹脂との相互作用 について議論する。

[1] Y. Nagame *et al.*, Radiochim. Acta **93**, 519 (2005).

[2] K. Tsukada et al., Radiochim. Acta 97, 83 (2009).

Fig. 1: Distribution coefficients, K_d , of Nb, Ta, Pa, and Db on the anion-exchange resin in HF/HNO₃ solutions.

Anion-exchange behavior of element-105, Db in HF/HNO₃ mixed solution KASAMATSU, Y., TOYOSHIMA, A., ASAI, M., TSUKADA, K., LI, Z., ISHII, Y., SATO, T. K., NISHINAKA, I., KIKUCHI, T., HABA, H., KUDOU, Y., SATO, N., OURA, Y., AKIYAMA, K., OOE, K., FUJISAWA, H., SHINOHARA, A., GOTO, S., KUDO, H., ARAKI, M., NISHIKAWA, M., YOKOYAMA, A., NAGAME, Y.

104 番元素 Rf の化学的性質解明に向けた TIOA、TTA 逆相クロマトグラフィ 1B06 ーの研究

(金沢大院自然¹、金沢大理²、金沢大理工³)○荒木幹生¹、武田勇樹²、南里朋洋¹、 横山明彦³

【はじめに】 本研究では超重元素 Rfの化学的性質の解明に向け、アミン抽出剤 TIOA やキレー ト抽出剤TTA保持した固定相を用いた逆相クロマトグラフィーによって液 - 液抽出データの獲得 を目指している。半減期の短い超重元素の分離・分析は短時間で行う必要があるため、ミクロス ケールの実験装置、平衡到達時間の速い実験系が求められる。そこで、カラムのサイズや流速な どの実験条件を変えた溶離挙動を調べることで逆相クロマトグラフィーの Rf 実験への適用可能 性を検討した。

固定相の調製は、アセトン中で保持担体 CHP20Y (スチレンジビニルベンゼン共重合 【実験】 体)またはシリカゲルに抽出溶媒である TIOA または TTA-オクタノール溶液を滴下し、一晩撹拌 後 55 ℃でアセトンのみを蒸発させることで行った。バッチ実験は以下の手順で行った。調製し た固定相を遠沈管に量りとり、各濃度の HCl もしくは各フッ化物イオン濃度の HF/0.1 M HNO3 混合溶液を無担体の⁸⁸Zr、¹⁷⁵Hfトレーサーと共に加え、撹拌した。遠心分離後、Ge半導体検出器 により水相の放射能を定量することで、分配比(D)を決定した。カラム法は①マイクロカラム

(3.5 mm $\phi \times 6.5$ mm)、②テフロンチューブ (1.6 mm ϕ)、③マクロスケールのカラム (5.0 mm ϕ) のサイズの異なる3種類で行った。第1溶離液でZr、Hfトレーサーを溶液化し、カラムを通った 溶出液を捕集後、ストリッピング溶液を流し、吸着放射能を捕集した。加えたトレーサーに対す る各フラクションの相対的放射能を Ge 半導体検出器で定量し溶離曲線を獲得した。

Fig.1にTTA 固定相によるマクロサイズのカラム(5 mm $\phi \times 10$ mm)を用いた溶離曲 【結果】 線、Fig. 2 に TTA 固定相によるマイクロカラム(3.5 mm $\phi \times 6.5$ mm)を用いた溶離曲線を示す。 マクロスケールでのクロマトグラフィーでは、バッチ法の分配比の結果と一致した溶離曲線を得 た。しかし、反応時間の短いマイクロカラムの場合には、吸着率の挙動はバッチ法の抽出挙動と 矛盾しないが、最初のフラクションに固定相と反応せずに溶出する放射能があるため、分配比を 決定するまでには至らなかった。反応速度の速い実験条件の更なる模索と、平衡未到達であって も平衡状態の分配比を理論的に予測する方法を検討する必要がある。

with micro-columns (3.5 mm $\phi \times 6.5$ mm).

Study on the reversed phase chromatography with TIOA or TTA extractant for chemistry of Element 104, rutherfordium (Rf) ARAKI, M., TAKEDA, Y., NANRI, T., YOKOYAMA, A.

1807 106 番元素シーボーギウムの同族元素モリブデンの溶媒抽出挙動

(阪大院理¹、理研仁科セ²、阪大核物理セ³)○大江一弘¹、矢作亘¹、小森有希子¹、藤沢弘幸¹、高山玲央奈¹、菊永英寿¹、吉村崇¹、高橋成人¹、羽場宏光²、 工藤祐生²、江崎豊²、高久圭二³、篠原厚¹

【はじめに】本研究では 106 番元素シーボーギウム(Sg)の化学的性質を解明することを目標と している。これまで Sg の溶液化学については 2 例の報告がなされているものの、それ以降は 全く報告例がなく、より詳細な Sg の化学的性質についての知見を得るためにはさまざまな実 験系で実験をおこなう必要がある。本研究では昨年、Sg の同族元素であるタングステン(W) について、塩酸溶液からのイオン対抽出挙動の報告を行った[1]。しかし、同じく同族元素で あるモリブデン(Mo)の溶媒抽出挙動のデータが取得できておらず、また抽出化学種について の知見もほとんど得られていなかった。そこで今回、Mo の塩酸溶液からの塩化テトラフェニ ルアルソニウム(TPAC)-クロロホルムおよび Aliquat 336-クロロホルム溶液による溶媒抽出実 験を行い、さらに Mo、W の分配比の抽出剤濃度依存性も調べたので、報告する。

【実験】実験には、加速器を用いて重イオン核融合反応により合成した短寿命 Mo、W 同位 体を用いた。Moの実験では、理化学研究所 AVF サイクロトロンを用いて、^{nat}Ge(²²Ne,xn)反応 により合成した ⁹⁰Mo(半減期 5.7 時間)を He/KCl ガスジェット搬送システムにより搬送し、ナ フロンシートに 5 分間吹き付けた。これを塩酸 200 µL で溶かし出し、同体積の TPAC-クロロ ホルム溶液または Aliquat 336-クロロホルム溶液と混合して振とうを行った。振とう時間は TPAC による抽出で 15 分、Aliquat 336 による抽出で 3 分とした。各相 160 µL ずつを別々に分 取して Ge 検出器を用いて γ 線測定を行い、各相の放射能から Mo の分配比を求めた。W の実 験では、大阪大学核物理研究センターの AVF サイクロトロンを用いて、^{nat}Dy(¹⁶O,xn)反応によ り合成した ¹⁷³W(半減期 7.6 分)を用いて実験を行った。実験手順は Mo と同じとした。

【結果と考察】Fig.1に、Moの分配比の塩酸濃度 依存性を、昨年報告したWの結果[1]とともに示 す。各抽出剤濃度は0.05 Mであった。Moの抽出 挙動はWによく似ており、Wよりも Moの分配 比が大きいことがわかった。塩酸濃度増大ととも に Moの分配比が大きくなっていることから、Mo の陰イオンの塩化物錯体が形成されていること が示唆される。Mo、Wの分配比の抽出剤濃度依 存性(塩酸濃度は11 M、抽出剤はAliquat 336)を 調べ、分配比の対数を抽出剤濃度の対数に対して プロットすると、Moで傾き1.08±0.04、Wで傾 き1.21±0.02の直線が得られ、どちらも-1の電荷

をもった錯体が抽出されていることが示された。今後さらにプロトン濃度一定下における分 配比の塩化物イオン濃度依存性を調べ、抽出化学種の特定を行う予定である。

【参考文献】

[1] 大江他, 第 52 回放射化学討論会 3P26 (2008).

Extraction behavior of molybdenum as homologue of element 106, seaborgium OOE, K., YAHAGI, W., KOMORI, Y., FUJISAWA, H., TAKAYAMA, R., KIKUNAGA, H., YOSHIMURA, T., TAKAHASHI, N., HABA, H., KUDOU, Y., EZAKI, Y., TAKAHISA, K., SHINOHARA, A.

1B08 電気化学的手法による 101 番元素メンデレビウムの還元

(原子力機構¹、阪大院理²、理研仁科セ³)○豊嶋厚史¹、塚田和明¹、 浅井雅人¹、佐藤哲也¹、李子杰¹、佐藤望¹、菊池貴宏¹、北辻章浩¹、 永目諭一郎¹、大江一弘²、篠原厚²、笠松良崇³、羽場宏光³

【はじめに】重アクチノイド元素では、5f 軌道の安定化によって低酸化状態が比較的安定に なる。特に101番元素メンデレビウム(Md)は2価イオンだけでなく1価イオンに還元される 可能性があり、非常に興味深い。これまで我々はシングルアトムレベルにおける電気化学的 手法を開発し[1]、102番元素ノーベリウムの酸化に成功した[2]。本研究では、電気化学的手 法を用いて101番元素メンデレビウム(Md)の2価への還元を調べたので報告する。

【実験】原子力機構タンデム加速器施設において、²⁴⁸Cm(¹¹B, 4*n*)反応によって半減期 27 分の ²⁵⁵Md を合成した。反応生成物を He/KCl ガスジェット法により化学室に搬送し、迅速化学分 離装置に 10 分間捕集した。 α 線測定の妨害となる KCl を除去するために、捕集物を 0.1 M HCl 水溶液に溶解して HDEHP 抽出カラム(Eichrom 社 Ln resin、1.6 mm ϕ ×30 mm)に導入し、KCl を溶出させるとともに Md³⁺を吸着させた。捕集、溶解の手順を 9 回繰り返した後、カラムに 吸着した Md を 6.0 M HCl 水溶液 350 μ L を用いて流し出した。溶出液を Ta 皿に収集し、He ガスとハロゲンランプを用いて強熱して蒸発乾固した後、0.1 M HCl 水溶液 220 μ L に溶解し

た。この溶液をフロー電解カラム装置に導入し、 0.1 M HCl 水溶液 1500 μ L を用いて溶離展開した。 カラム作用電極には 0 ~ -0.9 V の電圧 (Ag/AgCl 参照電極)を印加した。溶出液を 300 μ L ずつ 5 つに分取し、別々の Ta 皿に収集した。そ の後、3 M HCl 水溶液をカラム電極に導入し、カ ラム電極に吸着したイオンを流し出した。溶出 液を 300 μ L ずつ 2 つに分取し、別の Ta 皿に収 集した。これらの溶出液を蒸発乾固した後、PIPS 検出器を用いて 7 つの Ta 皿の α 線測定を行った。

【結果と考察】予備的結果ではあるが、図 1(a)、 (b)にそれぞれ印加電圧 0 V 並びに-0.9 V で観測 された 255 Md と 250 Bk (副反応生成物)そして別の 実験で得た 85 Sr²⁺の溶出挙動を示す。印加電圧 0 V では、Md は 0.1 M HCl 水溶液で溶出せず、3.0 M HCl で溶出した。この挙動は Bk³⁺と同じであ り、Md が 3 価イオンとして水溶液中に存在する 事を示している。一方、-0.9 V では、Md は 0.1 M HCl 水溶液で溶出した。この溶出挙動は Sr²⁺ と同じであり、2 価に還元された事がわかる。 【参考文献】

Fig. 1. Elution behavior of 255 Md and 250 Bk at the applied potentials of (a) 0 V and (b) -0.9 V (vs. Ag/AgCl) together with that of 85 Sr²⁺ for comparison.

[1] A. Toyoshima et al., Radiochim. Acta 96, 323-326 (2008).

[2] A. Toyoshima et al., J. Am. Chem. Soc. 131, 9180-9181 (2009).

Reduction of element 101, mendelevium, with flow electrolytic column chromatography TOYOSHIMA, A., TSUKADA, K., ASAI, M., SATO, T. K., LI, Z. J., SATO, N., KIKUCHI, T., KITATSUJI, Y., NAGAME, Y., OOE, K., SHINOHARA, A., KASAMATSU, Y., HABA, H.

1B09 新規酸素・窒素ヘテロドナー配位子 PTA のアクチノイド抽出特性と錯形成特性

(原子力機構・放射光¹)〇小林徹¹、鈴木伸一¹、池田篤史¹、塩飽秀啓¹、岡本芳 浩¹、阿久津和宏¹、矢板毅¹

特定のアクチノイドを分離・抽出できるイオン認識化 合物の創製は、核燃料サイクルにおける分離技術や放射 性廃棄物の除染技術の開発などに関連する重要なテー マである。特に、3価アクチノイドと3価ランタノイド は化学的性質が類似しており、その分離は困難を極める。 近年、3価アクチノイドが3価ランタノイドより僅かに ソフトであるという性質を利用してこれらを分離でき るソフトドナー系抽出剤が注目されており、芳香族窒素 配位子を中心に抽出剤の開発研究が活発に行われてい る。しかしながら、芳香族窒素化合物は、酸性条件下で

N-alkyl-*N*-phenyl-1,10-phenanthroline-2-carboxamide (PTA) R¹ = H or Me R² = Me or Oc

図1.酸素・窒素ヘテロドナー配位子PTA

は窒素原子がプロトン化するため、金属イオンへの錯形成能が著しく低下してしまう。従っ て、芳香族窒素系抽出剤の殆どは、強酸性溶液から金属イオンを抽出することができない。 このような背景から、強酸性条件下においても3価アクチノイドを3価ランタノイドから効 率よく分離・抽出できる抽出剤の開発が重要な課題となっている。一方で、ハードドナーで ある酸素ドナー系抽出剤は、アクチノイドやランタノイドと高い親和性を示し、また、プロ トン化を受けないため、酸性条件においても非常に高い抽出能を示す。このハードドナーの 性質とソフトドナーの性質を相補的に利用することができれば、酸性条件においても高い分 離・抽出能を有する抽出剤を開発できると考えられる。そこで我々は、酸素・窒素の両方を ド ナ ー 元 素 と し て 併 せ 持 つ ヘ テ ロ ド ナ ー 化 合 物 に 着 目 し 、 *N*-alkyl-*N*-phenyl-1,10-phenanthroline-2-carboxamide (PTA、図1)を合成し、そのアクチノイド 抽出特性や錯形成特性を検討した。

PTAによるアクチノイド抽出実験を行った結果、Am³⁺/Eu³⁺の分離能が高く、水相の硝酸濃 度が1M以上と高い酸濃度領域においてもAm³⁺を抽出できるなど、非常に優れた抽出特性を 示すことが明らかとなった。そこで、錯形成における酸素ドナー導入の効果を検討するため に、UV/vis分光滴定実験により酸解離定数およびEu³⁺との錯生成定数を算出したところ、酸 素ドナーを持たない1,10-phenanthroline (Phen)とPTAでは、窒素原子の塩基性度には殆ど変 化が無いにも関わらず、PTAの錯形成能はPhenより100倍以上も大きいなど、酸素ドナーが 金属イオンとの錯形成に積極的に関与することを示唆する結果が得られた。また、得られた 錯生成定数から酸性条件における錯体種のスペシエーションを計算したところ、Phen は酸濃 度が0.1M以上では殆ど錯形成出来ないのに対し、PTA は酸濃度が1M 以上でも錯形成してい ることがはっきりと確認できるなど、酸素ドナーを導入することで酸性領域での錯形成能が 飛躍的に向上していることが明らかとなった。さらに、吸収スペクトルの時間変化を検討し た結果、酸素ドナーを導入することで錯形成速度も大きく向上していることが分かった。本 発表では、錯体の単結晶 X 線構造解析や EXAFS 等の結果も示し、PTA の錯形成特性につい て分子構造論と化学平衡論に基づいて議論する。

Actinides extraction and complexation properties of new oxygen-nitrogen hetero donor ligand PTA Kobayashi, T.; Suzuki, S.; Ikea-Ohno, A.; Shiwaku, H.; Okamoto, Y.; Akutsu, K.; Yaita, T.

1B10 3 価アクチノイドの活性炭への選択的吸着 (日本原子力研究開発機構 原子力基礎工学研究部門) ○有阪 真、渡邊雅之、木村貴海

【緒言】使用済み核燃料に含まれる 3 価アクチノイド(An(III))は、長半減期のα線放出核種で あるため、個別に分離し、処分されることが望ましい。しかし、同時に含まれるランタノイド (Ln(III))と化学的挙動が似ていることから、その分離は難しい。最近我々は、酸性溶液中のAn(III) が Ln(III)に比べて、活性炭に選択的に吸着されることを見いだした¹⁾。本研究では、表面酸化処 理を行った活性炭(CAox)および未処理の活性炭(CA)へのAn(III)およびLn(III)の硝酸溶液か らの吸着挙動を調べ、それらの吸着機構について検討を行った。

【実験】活性炭(和光純薬:おがくず、 $ZnCl_2$ 賦活)の酸化処理には、濃硝酸($60^{\circ}C$)を用いた。 活性炭(50 mg)とトレーサ量のAm-241およびEu-152を含む硝酸溶液(2 ml)を $25^{\circ}C$ で3時間 振り混ぜた。その後、水相を分取し、Ge半導体検出器を用いてそれらの放射能を測定すると共に、 pHを測定した。Am(III)およびEu(III)の分配係数(K_d)は、次式を用いて求めた。

 $K_d = (C_0 - C)V/Cm$ [C_0 :初期放射能、C:平衡放射能、V:溶液体積 (ml)、m:活性炭乾燥重量 (g)] 【結果・考察】CA および CAox に対する Am(III)および Eu(III)の K_d の pH 依存性を下図に示す。 どちらの活性炭の場合も pH の増加に対してほぼ直線的に K_d が増加した。このことは、プロトン との競争反応が存在し、何らかの静電的相互作用により吸着が起こっていることを示唆する。 表面酸化処理により、それらの比表面積は CA の 1482 m²/g から CAox の 873 m²/g へと減少したが、 Am(III)および Eu(III)の K_d は共に増大した。一方で、それらの分離係数 (SF = K_d (Am)/ K_d (Eu))は より小さい値となった (pH 2.0 において 1.9 から 1.4)。濃硝酸による表面酸化処理では、活性炭 表面にカルボキシル基やカルボニル基などの酸素ドナー官能基が生成するため、生成したそれら

の官能基との静電的相互作用により、イオン 半径が同程度の Am(III)/Eu(III)間で K_d の差が 小さくなったと考えられる。また、CA を用い た場合、一連の Ln(III)間でそれらの K_d にほと んど差が見られないこと²⁾、官能基を持たない グラファイト(炭素純度 99.999%)を用いても Am(III)および Eu(III)の吸着が起こり(それら の K_d は CA のそれに比べて小さい)、同様に Am(III)が選択的に吸着されること²⁾などを勘 案すると、芳香環の π 電子との相互作用によ り分離が達成されている可能性が考えられる。

図 Am(III)および Eu(III)の K_dの pH 依存性

¹⁾ 三価ランタノイドと三価アクチノイドの分離方法(特願 2008-277239)有阪 真、渡邉 雅之 ²⁾ 日本原子力学会 2009 年春の年会予稿集 E17, E18

本研究は科研費若手研究(B)(21760708)の助成を受けたものである。

Selective Adsorption of Trivalent Actinides to Activated Carbon ARISAKA, M., WATANABE, M., KIMURA, T.

電極触媒反応に基づく Np(IV)の迅速還元調製 1B11

(原子力機構¹、京都悠悠化学研究所²)〇北辻章浩¹、木村貴海¹、木原壯林²

【はじめに】 多様な原子価をとるアクチノイド(An)イオンを目的の原子価に調整することは、 選択的な分離や精密な分析に欠かせない。電解による原子価調整は、化学試薬の添加を必要 とせず、電位設定により自在に反応を制御できる利点をもつ。しかし、ジオキソイオンの金 属-酸素結合の開裂あるいは形成を伴う An⁴⁺/AnO₂⁺間の酸化還元は電気化学的に非可逆性を 示し、大きな過電圧を要するなど複雑で、詳細な電極反応も明らかでない。本研究では、定 電位差電解あるいはボルタンメトリーにより NpO₂⁺ の還元反応を調べ、その反応機構を明ら かにすると共に、見出した反応機構に立脚した NpO₂⁺から Np⁴⁺の迅速な還元調整を試みた。

【実験】 Pt の網状作用電極、Ag-AgCl 参照電極(SSE)、Pt 網対極からなる電解セルを用い、 撹拌子により試料溶液を撹拌しながら一定電位でバルク電解した。NpO₂⁺溶液は、NpO₂²⁺を +750 mV で電解還元して調製した。白金黒電極は、塩化白金酸溶液中で 1.6 mA cm⁻² の電流密 度で 5 時間電解還元して白金網に白金を電析させて作製した。

【結果・考察】 右図(a)は、白金網電極を用いて-40mV および-70mV で NpO₂⁺を定電位差電解 した時の電解電流(*i*)の時間(*t*)変化を示している。一般的な定電位差電解では、*i* は酸化還元活 性種の濃度に比例し、*t* に対し指数関数的に減少する。一方、NpO₂⁺の還元はピーク形状を持

つ特徴的な *i-t* 曲線を示した。ボルタンメトリー測定結果と 併せて、この還元を次の二つの機構によるものと結論した。 (i) Np⁴⁺/Np³⁺電子移動メディエータによる化学反応

$$Np^{4+} + e^- \rightarrow Np^{3+}$$

 $NpO_{2}^{+} + Np^{3+} + 4H^{+} \rightarrow 2Np^{4+} + 2H_{2}O$

(ii) 白金上へ還元吸着した水素による電極触媒反応

 $Pt - H^+ + e^- \rightarrow Pt - H$

 $NpO_{2}^{+} + Pt - H + 3H^{+} \rightarrow Np^{4+} + 2H_{2}O + Pt -$

 NpO_2^+ をより短時間で電解還元するには、より負電位(大きな過電圧)で電解する必要がある[図(a)参照]が、随伴する水素ガス発生が著しく大きくなり電流効率が低下するとともに、電解後の Np^{4+},Np^{3+} 混合溶液中の Np^{3+} 割合が増加する。

そこで、電極触媒反応(3),(4)を効果的に高めるため白金網 に白金を電析させた電極(白金黒)を用いて NpO_2^+ を電解還 元したところ、図(b)に示すように、より小さな過電圧で迅 速な Np^{4+} への電解還元に成功した。電解後の Np^{4+} の純度は 99%以上であった。*i-t* 曲線の解析から、電解還元はほぼ一 次反応であり、その速度定数は NpO_2^{2+} から NpO_2^+ への可逆 な還元の場合と同程度であり、物質輸送速度に律速された 迅速な電解還元を達成できた。

Rapid reductive preparation of Np(IV) based on the electrocatalytic reaction KITATSUJI, Y., KIMURA, T., KIHARA, S.

1B12窒素ドナー化合物 N,N-dialkyl-2-(1H-benzimidazol-2-yl)-pyridine-6-carboxamide の開
発とf元素との錯形成挙動の解明

(原子力機構·放射光⁻¹、茨大院·理工²)○阿久津和宏^{1,2}、小林徹⁻¹、塩飽秀啓⁻¹、 鈴木伸一⁻¹、池田篤史⁻¹、岡本芳浩⁻¹、矢板毅^{-1,2}

【緒言】三価ランタノイド(Ln³⁺)から三価アクチノイド(An³⁺)を 分離することは、高レベル放射性廃棄物処理における重要なプロセスの一つである。Phenanthroline や Benzimidazole-pyridine なR1^N どの窒素ドナー化合物は、優れたAn³⁺の認識・分離能を有していることが近年明らかとなり、その応用が期待されている。我々は、新規窒素ドナー化合物:N,N-dialkyl-2-(1*H*-benzimidazol-2-yl)-pyridine-6-carboxamide (BIZA) に着目し、その開発を行った。更に、Ln³⁺との錯形成挙動を分光滴定及び XAFS を用いて解明した。

図1 BIZAの構造 R₁=Methyl, Butyl, Octyl R₂=Methyl, Butyl, Octyl, Phenyl, Tolyl

【実験】BIZA 誘導体は、2-(1*H*-benzimidazol-2-yl)-pyridine-6-carboxylic acid に任意アミンを作 用させてアミド化することで合成した。更に、種々のアミンを用いることで、 R_1 , R_2 が異なる 6種の BIZA 誘導体を系統的に合成した。また、分光滴定及び XAFS 実験では、6種の BIZA の Eu³⁺との錯形成挙動を比較し、 R_1 , R_2 が錯形成に及ぼす影響を検討した。なお、XAFS の測 定は、SPring-8 BL11XU 及び KEK-PF BL27B において行った。

【結果と考察】分光滴定及び XAFS の結果から、Eu³⁺と BIZA は 1:1 及び 1:2 の錯体を形成することが判明した。また、分光滴定により Eu³⁺と BIZA 誘導体との錯生成定数($\log \beta_1, \log \beta_2$)を算出したところ、アルキル鎖が長い BIZA(R_1 =Octyl)誘導体はアルキル鎖が短い BIZA

(R_1 =Methyl) 誘導体と比べて錯生 成定数が一桁近く小さいことが明 らかとなった(図 2)。更に、 R_1 =Butyl の BIZA 誘導体は、両者の中間の値 であった。一方、 Eu^{3+} -BIZA 錯体の XAFS を解析した結果、 Eu^{3+} に配位 した O, N 原子と Eu との結合距離の 平均値は、 R_1 =Octyl の誘導体の方が R_1 =Methyl の誘導体よりも長くなる 結果が得られた。これらの傾向は、 アルキル鎖の立体障害の影響によ るものと推測される。これらの結果 から、アルキル鎖の種類や導入位置 など、より効果的に錯形成する化合 物開発の方向性が示唆された。

本発表では、BIZA の An(III)及び Ln(III)の抽出特性についても紹介す る。

N,*N*-Dialkyl-2-(1*H*-benzimidazol-2-yl)-pyridine-6-carboxamide and Elucidation of Their Complexation Toward f-element Ions.

AKUTSU, K., KOBAYASHI, T., SHIWAKU, H., SUZUKI, S., IKEDA-OHNO, A., OKAMOTO, Y., YAITA, T.

1B13 不純物をドープした酸化亜鉛中の局所場観察

(金沢大理工¹、京大原子炉²)○佐藤渉¹、大久保嘉高²、横山明彦¹、中西孝¹

【はじめに】

酸化亜鉛(ZnO)は透明伝導性をもつ内因性のn型半導体である。本来の伝導性に加え、ZnO は不純物の存在で電気伝導度が大きく変わるため、不純物の種類・量・導入条件を変えるこ とにより、物性を制御することが可能となる。我々はこれまでの研究において、不純物とし てインジウム(In)を添加した粉末 ZnOの局所場を、^{III}Cd(←^{III}In)をプローブとするγ線 摂動角相関法で観察し、バルクの伝導性と相反する局所場の電気伝導異常を見出した[1]。こ の伝導異常は局所構造変化に起因すると考えられるが、いまだプローブの占有位置を特定す るには至っていない。従って本研究では、プローブサイトに関する情報を得るべく、Inのド ープ量に対するプローブ核位置での電場勾配の変化に着目して実験を行った。

【実験】

In(NO₃)₃・3H₂Oのエタノール溶液に ZnO 粉末を加え、エタノールが完全に蒸発するまで加熱 撹拌して粉末試料を得た。In 濃度は Zn に対して原子数比でそれぞれ 0.05%、0.5%、2%、10% となるように調製した。これらの粉末試料と In をドープしない ZnO 粉末を別々に錠剤成形し て、1,273 K で 3 時間焼成した。これらの焼成試料に¹¹¹In の塩酸溶液を滴下し、1,373 K で 2 時間焼成して摂動角相関測定用の試料とした。測定には従来の 4 検出器法を採用し、室温か ら 1000 K の温度範囲において、摂動角相関スペクトルの温度依存性を調べた。

【結果】

Fig. 1(a)に In を 0.5%、 Fig.1(b)に 10% ドープし て得られた室温での摂動角相関スペクトルを 示す。双方共にプローブ核と核外場との電気四 重極相互作用を反映する典型的な摂動パター ンであり、全体の86%がフィッティングライン で示される振動成分である。In を 0.5%ドープ したスペクトル (Fig.1(a)) には、¹¹¹In の EC 壊 変に伴う後遺効果を示唆する damping が観測 された。一方、Inを10%ドープした場合(Fig.1 (b)) は、Fig.1(a)と同様の damping に加えて、 スペクトルの振動パターンが時間経過と共に 消失する現象が現れている。これはプローブ核 位置での電場勾配に分布が生じているためで あると考えられる。ドープ量によって、スペク トルの温度依存性にも違いが見られた。本講演 では、電場勾配とそれらの分布の度合い、さら にこれらの温度依存性について議論する。

【参考文献】

[1] W. Sato et al., Phys. Rev. B. 78, 045319 (2008).

Local fields in impurity-doped ZnO SATO, W., OHKUBO, Y., YOKOYAMA, A., NAKANISHI, T.

Fig. 1. TDPAC spectra of $^{111}Cd(\leftarrow^{111}In)$ (a) in 0.5 at.% and (b) in 10 at.% In-doped ZnO at room temperature.

1B14

イオン注入酸化スズ薄膜の希薄Feイオンの磁気状態

(東大院工¹、Dresden-Rossendorf 研²) ○野村貴美¹、ネメスゾータン¹、ロイターへルフリート²

[1] はじめに――希薄磁性半導体(DMS)の室温強磁性の発現はその基礎的理解とスピントロニクス材料としての応用から注目を浴びている。ここでは透明な酸化スズ半導体膜に鉄イオンを注入することによって作製した膜の磁性発現と注入鉄イオンの状

態について解析した。室温でイオン注入したものは強 磁性を示さなかったが、基盤温度を500℃にして Fe を イオン注入するとKerr 効果が認められ、これらの⁵⁷Fe 転換電子メスバウアー(CEM)スペクトルの解析結果を 報告する。

[2] 実験方法 1x10⁻⁵ hPa、基盤温度500℃の酸化ス ズ薄膜(0.1%Sbまたは3%Sb)に5x10¹⁶ Fe/cm²イオン注入 をおこなった。TRIM の計算では100keVの加速エネル ギーでは40nmの深さに5%の極大鉄濃度を持つ。自作の 後方散乱型ガス比例計数管によるエネルギー弁別⁵⁷Fe CEMスペクトルを測定した。

[3] 結果——基盤温度500℃で5×10¹⁶ Fe/cm² イオン注 入した酸化スズ膜(0.1%Sb)は、図1b)のようにKerr 効果を示した。透明な鉄ドープ酸化スズ膜が得られた が、抵抗は非常に高くなった。この皮膜のCEMスペク トルには、常磁性Fe²⁺とFe³⁺のピークの他にマグネタイ ト(Fe₃0₄のサイトA:B = 1:2)の磁気分裂ピークが観測 された(図1a))。表面層ではFe₃0₄のピーク強度が高く、 またFe³⁺常磁性ピークがFe²⁺常磁性ピークよりも大き かった。これから、酸化スズ薄膜の強磁性出現は、Fe₃04 微粒子の析出によるものである。400℃でポスト・ア ニールしても強磁性の振る舞いは、消失しなかった。 そのCEMスペクトルには、Fe³⁺とFe²⁺の常磁性ピークの 他一組のブロードな磁気分裂ピーが観測されたこと から、これは同じスピネル構造を有する強磁性マグへ マイト(γ-Fe₂0₃)によると考えられる。3%Sbを含む酸 化スズ皮膜のFeイオン注入についてもFe₃O₄やy-Fe₂O₃ のピークが観測され、これらの強度は小さかったが 0.1%Sb酸化スズ皮膜と同様な結果が得られた。

図 1, 500℃において⁵⁷Fe イオン注入した酸化 スズ皮膜(0.1%Sb)の Kerr 効果(回転角の磁場 ヒステリシス)およびエネルギー弁別 CEM スペ クトル

Magnetism and Mossbauer study of SnO₂ films implanted with ⁵⁷Fe, NOMURA K., NEMETH Z., and REUTHER H.
1B15 新規導電ガラスのメスバウアースペクトル (近畿大産理工¹、近畿大院産技術²) 〇西田哲明^{1,2}、安光寛記²、磯田悟司¹

【はじめに】酸化バナジウムを主成分とするバナジン酸塩ガラスは半導体として知られてお り、電気抵抗の大きさはメガオーム(MΩcm)オーダーである。西田らは、酸化カリウム– 酸化鉄–酸化バナジウム系ガラスを作成し、これをガラス転移温度以上、結晶化温度以下の 温度領域で適度に再加熱することにより、電気抵抗をキロオームオーダーまで減少させるこ とに成功した¹⁾。この酸化カリウムを成分とするバナジン酸塩ガラスの特徴として、ガラス 骨格が一次元的であることが挙げられる。バナジン酸塩ガラスの導電機構は、ガラス骨格を 構築する3価あるいは4価のバナジウムから5価のバナジウムへの電子の連続的なホッピン グであることが知られている。そこで西田はガラス骨格に3次元性を付与する目的で、新た に酸化バリウム–酸化鉄–酸化バナジウム系ガラスを作成し、これをガラス転移温度以上で 再加熱することにより、電気抵抗をメガオームから数オームの範囲で任意に変化させること に成功している^{2,3)}。

これらの研究開発において「ガラスを再加熱するといかなる構造変化が生じるか」を解明 する上で、ガラス骨格を構成する鉄(⁵⁷Fe)のメスバウアー分光法が極めて有効となる。メス バウアー分光法を有効活用することにより「環境科学」や「材料科学」分野における核や放 射線の独自性、優位性を実証できることが期待される。

【実験】炭酸バリウム、酸化鉄(III)、酸化バナジウム(V)の必要量を精秤し、よく混合したものを白金るつぼ(あるいはアルミナシリカるつぼ)に取り、電気炉中1050℃で90分加熱溶融した。その後、この溶融物を、予め別の電気炉中で350~500℃の設定温度に加熱しておいたステンレス製容器に流し出し、それぞれの温度で適度に再加熱した後、これを電気炉中で放冷することにより電気抵抗の異なる種々の新規導電ガラス(登録商標:*NTA*ガラスTM)を作成した。これらの導電ガラスを、室温から100℃の範囲で直流四端子法により電気抵抗を求めることにより、電気伝導の活性化エネルギー(*Ea*)を算出した。メスバウアースペクトルの測定は370 MBqの⁵⁷Co(Rh)線源を用いて室温で定加速度法により行った。

【結果】再加熱した NTA ガラスTMのメスバウアースペクトルを測定すると、 Δ の値が熱処理 温度と熱処理時間に応じて 0.68 mm s⁻¹から 0.50 mm s⁻¹まで連続的に減少した。このことから、 熱処理により FeO₄四面体の「ゆがみ」や、FeO₄四面体と頂点酸素を共有してガラス骨格を構 築している VO₄四面体の「ゆがみ」が小さくなる(ガラス骨格が「構造緩和」する)ことが 分かる。熱処理前の試料の電気伝導の Ea は 0.38 eV であったが、熱処理と共に Ea は小さく なり、最終的には 0.13 eV 程度まで減少した。またこれに伴い σ の値が直線的に増加した。

以上の結果を総括すると、ガラス骨格の構造緩和により伝導帯(CB)に存在するキャリヤー(電子)数が増え、σが上昇すると考えられる。このようにメスバウアー分光法を用いることにより、原子あるいはナノレベルで新素材の材料設計や開発を行うことが可能となる。 今後、資源・エネルギー問題や環境問題の解決に放射化学が貢献できることを願っている。

References

[1] Nishida, T., Kubota, J., Maeda, Y., Ichikawa, F. and Aomine, T., *J. Mater. Chem.*, 6 (1996) 1889-1896.
 [2] Fukuda, K., Ikeda, A. and Nishida, T., *Solid State Phenom.*, 90-91 (2003) 215-220.
 [3] 西田哲明、特許第3854985 (2006).

Mössbauer Spectra of New Electrically Conductive Vanadate Glass NISHIDA, T., YASUMITSU, H., ISODA, S.

1B16 シュウ酸及びマロン酸鉄(Ⅲ)錯体のメスバウアー分光学的研究 (首都大院理工)○片田元己、菊池玲央奈、両角 伸、秋山和彦

【はじめに】 シュウ酸基やマロン酸基を配位子とする鉄錯体は、放射線分解、光化学、分子 磁性体など多くの研究が行われてきた。特に、架橋配位子となりやすいシュウ酸基の場合に は、自己集積化により多次元錯体を形成することが期待され、構造化学的にも興味がある。

一方、単純な八面体型のトリスシュウ酸鉄(Ⅲ) 錯体やトリスマロン酸鉄(Ⅲ) 錯体は、 スピンースピン緩和やスピンー格子緩和が観測され、メスバウアースペクトルでは線幅の広 いシングレットとして観測される。本研究では、対イオンとして長鎖のアルキルアンモニウ ム (n-C_nH_{2n+1}NH₃⁺)を用いることにより、鉄ー鉄間の距離を系統的に変化させ、鉄ー鉄間の 距離に依存した緩和現象についてメスバウアー分光法により検討するとともに、シュウ酸基 で架橋した二量体鉄(Ⅲ) 錯体において観測された四極分裂の緩和現象についても検討した ので合わせて報告する。

【実験】 n-モノアルキルアンモニウムを対イオンとするシュウ酸及びマロン酸鉄(Ⅲ) 錯体 は、アルキルアンモニウムイオンと対応するトリスジカルボン酸鉄(Ⅲ) 酸イオンを用いて 水溶液あるいは水-アセトン(エタノール) 混合溶液中で合成し、C、H、N 元素分析により 同定した。また、シュウ酸架橋構造を含む鉄(Ⅲ)の二核錯体(1)(Et₄N)₄[Fe₂(ox)(NCS)₈]、(2) Fe₂(ox)(acac)₄、(3) Fe₂(ox)(salapn)などの合成は既報の合成法を参考に行った(H₂ox=シュウ酸、 Hacac=アセチルアセトン、H₂salapn=N,N'-(ビスサリチルアルデヒド)-(1,3-ジアミノペンタン)。 メスバウアースペクトルの測定は、液体ヘリウム温度から室温までの温度領域で測定した。

【結果と考察】

液体窒素温度におけるモノアルキルアンモニウム錯体のメスバウアースペクトルはいずれ も線幅の広いシングレットとして観測された。シュウ酸鉄(III)錯体の場合には、アルキル基の 炭素数 n が 12 から 18 へと増加するにつれて線幅は、2.78 ~3.7 mm s⁻¹と直線的に増加し鉄 ー鉄間の距離の広がりに対応して緩和時間が長くなることが示唆されたが、マロン酸鉄(III) の場合には、明確な依存性は観測されなかった。さらに、いずれの場合にも線幅が減少する と予測された n=10 において、逆に線幅が増加した。特にマロン酸鉄(III)の場合には、4.8 mm s⁻¹と n=12 (2.7 mms⁻¹)と比較して倍近く、鉄ー鉄間距離の変化では説明できない。そこで、 n=10 について、室温から液体窒素温度まで測定した結果、170 K 近傍で急激な増加が観測さ れ、線幅の広がりはスピン-スピン緩和によりスピン-格子緩和の方が支配的である。

二核鉄(III) 錯体の系では、表1に示すように四極分裂の非対称性の程度が配位子に依存 していることがわかった。配位座が多い salapn の方が構造的に歪んでおり、軸対称性が低く なり、緩和時間も短くなった結果、スペクトルの対象性がよくなったものと推定される。

44-44-1大	異性体シフト 四極分裂		線幅	
业大理中	IS/mm \cdot s ⁻¹ QS/mm \cdot s ⁻¹		HW/mm · s ⁻¹	
$(1)(Et_4N)_4[Fe_2(ox)(NCS)_8]$	0.53	0.20	1.57 0.68	
(2) $Fe_2(ox)(acac)_4$	0.56	0.72	0.87 0.63	
(3) $Fe_2(ox)(salapn)$	0.51	0.94	0.63 0.50	

表1 メスバウアーパラメータ(液体窒素温度)

Mössbauer spectroscopic studies of oxalate and malonate iron(III) complexes KATADA, M., KIKUCHI, R., MOROZUMI, S., AKIYAMA, K.

1B17 プラスチックシンチレーション検出器を用いた ⁵⁷Mn インビームメスバウアー分光 における S/N 比の向上

(ICU¹、理研仁科セ²、東理大理³、阪大院理⁴、金大理工⁵、日大生産工⁶、放医研⁷) ○長友傑¹、小林義男²、久保謙哉¹、山田康洋³、三原基嗣⁴、佐藤渉⁵、宮﨑淳⁶、 佐藤眞二⁷,北川敦志⁷

【はじめに】 近年の不安定核ビームの目覚ましい開発によって、原子核物理のみならず物質 科学や化学への新しい応用がもたらされた。我々は、KMnO₄[1]、graphite (HOPG)、固体酸素 [2] やSi 半導体中[3]に、高エネルギーに加速したβ崩壊性不安定核⁵⁷Mn ($T_{1/2}$ =1.45 min.)を 植込み、その娘核である⁵⁷Fe のエキゾティックな化学状態をメスバウアー分光法によって研 究してきた。メスアバウアー効果の検出には、⁵⁷Fe を濃縮したステンレス膜吸収体を内蔵し た平行平板雪崩検出器 (PPAC)を使用した [4]。使用した PPAC にはγ線の共鳴信号と母核 ⁵⁷Mn から放射されるβ線の信号との分解能がない為に、共鳴信号とそのβ線によるノイズと の比 (S/N 比)の悪化が懸念されていた。本研究では、薄いプラスチックシンチレーション 検出器を用いて、β線の信号を選別し除去することにより、S/N 比の向上を目指した。

【実験】実験は、放医研 HIMAC の二次ビームコースにて行った。核子あたり 500 MeV に加速した ⁵⁸Fe イオンを 27mm 厚の Be 標的に照射し、入射核破砕過程によって高エネルギーの ⁵⁷Mn を生成した。生成された ⁵⁷Mn は、二次ビームコースによって他の破砕片から選別され、 適切なエネルギー減衰後、非磁性金属 Al 板 (50mm x 50 mm x 1mm 厚)に植え込まれた。 ⁵⁷Mn の β 崩壊後、 ⁵⁷Fe から放射される 14 keV の γ 線のメスバウアー共鳴吸収を、メスバウアード ライバーに設置した PPAC により測定した。 PPAC とサンプルの間に、 0.5mm 厚のプラスチ ックシンチレーション検出器を設置し、14 keV γ 線と β 線とのアンチョインシデンスをとり、 β 線由来の信号を除去した。

【結果】 アンチコインシデンス法によって測定された室温の Al 中での⁵⁷Fe の発光メスバウ アースペクトルを Fig. 1 に示す。測定時間は 1.5 時間、PPAC のβ線信号除去後の計数率は約 2.0cps/ch であった。Fig. 1 に示されるように、I.S. = 0.42(1) mm/s(面積強度 0.82)と I.S. = 0.03(1)

mm/s (面積強度 0.18) の 2 本のシングレットで解析 でき、それぞれ置換格子位置と格子間位置であった。 ベースラインの計数が 61 カウントであるのに対し、 置換位置に対応するピークの計数は 182 カウントと、 実に約 3 倍もの計数であった。β線を除去しない以 前の測定ではこの計数比が 1.2 倍(測定時間:15 時 間)であったことから、β線除去により短時間で質 の高いスペクトルを得る事に成功した。

[1] Y. Kobayashi et al., J. Rad. Nucl. Chem., 255 (2003) 403.

- [2] Y. Kobayashi et al., Hyp. Int., 166 (2005) 357.
- [3] Y. Yoshida et al., Physica B, 401-402 (2007) 101..
- [4] T. Saito et al., J. Rad. Nucl. Chem., 255 (2003) 519.

Fig. 1 In-beam emission Mössbauer spectrum of ⁵⁷Fe implanted in nonmagnetic metal Al as a function of velocity with the β -ray rejection.

Improvement of signal to noise ratio in ⁵⁷Mn-in-beam Mössbauer spectroscopy by utilizing a plastic scintillation counter.

NAGATOMO, T., KOBAYASHI, Y., KUBO, M.K., YAMADA, Y., MIHARA, M., SATO, W., MIYAZAKI, J., SATO, S., KITAGAWA, A.

1B18 酸化アルミニウム固体中の ⁵⁷Mn インビーム・メスバウアー分光実験

 (ICU¹、理研²、東理大理³、阪大院理⁴、放医研⁵、日大生産工⁶、金大理工⁷)
 長友傑¹、小林義男²、久保謙哉¹、山田康洋³、三原基嗣⁴、佐藤眞二⁵、北川 敦志⁵、宮﨑淳⁶、○佐藤渉⁷

【はじめに】 酸化アルミニウム (Al₂O₃) は、ルビーやサファイアの主成分としても知られ ているように、結晶中に存在する不純物によって多様に発色するため、不純物の種類や存在 量と発色との関係は、大変興味深い研究対象となっている[1]。しかし、発色をはじめとする 様々な物性に関して、Al₂O₃結晶中での不純物の担う役割は完全には理解されていない。そこ で本研究では、我々が開発を手がけたインビームメスバウアー分光法を応用し、Al₂O₃中の不 純物鉄サイトの微視的な情報を得ることを目的として実験を行った。

【実験】 実験は放射線医学総合研究所の重粒子加速器施設にて行った。⁵⁸Fe の一次ビーム (500 MeV/u)をベリリウムターゲットに照射し、入射核破砕反応で生成された⁵⁷Mn ($T_{1/2}$ = 1.45 m)を電磁石で分離して、Al₂O₃試料 (50 mm $\phi \times 5$ mm, フルウチ化学製)にイオン注入 した。インビーム法で測定する場合、測定時のバックグラウンドが S/N 比を低減させる原因 となっていたので、今回は以下の二つの点を工夫して S/N 比を向上させた。1)ビームをパ ルス化して測定することによって、ビーム照射による放射化で生成される短寿命核の影響を 排し、2)Al₂O₃試料中の⁵⁷Mn から放出される β 線を反同時計数法によって除いた[2]。試料 中の⁵⁷Mn の壊変によって放出される 14.4 keV のメスバウアーガンマ線は、平行平板電子なだ れ型検出器[3]を用いて室温で測定した。

【結果】室温測定で得られたメスバウアースペクトルを Fig. 1 に示す。上記の工夫によって、 S/N 比が飛躍的に向上した。スペクトルには補助線で示したように、シングレット (I.S. = -0.44 mm/s) とダブレット (I.S. = -0.72 mm/s, Q.S. = 1.9 mm/s) の2成分が存在している。シングレ

ットは高スピンの Fe³⁺で、これは Al³⁺ の置換位置を占有している成分である と考えられる。一方ダブレットの成分 については、四極分裂が観測されてい るため、Al₂O₃格子間隙に入った Fe²⁺の 成分である可能性を示唆している。今 後はクライオスタットを導入して、ス ペクトルの温度依存性から成分の帰属 を行う予定である。

【参考文献】

[1] J. M. Garcia-Lastra *et al.*, *Phys. Rev.* B79, 241106 (2009).

[2]長友傑 他、本要旨集 1B17. [3]小林義男、ぶんせき 277 (2004).

Fig. 1. In-beam Mössbauer spectrum of 57 Fe($\leftarrow {}^{57}$ Mn) implanted in polycrystalline Al₂O₃. The measurement was performed at room temperature. The velocity on the abscissa is relative to an α -Fe standard in emission mode, which takes inverse signs to conventional transmission mode.

In-beam Mössbauer spectroscopy of ⁵⁷Mn implanted into aluminum oxide NAGATOMO, T., KOBAYASHI, Y., KUBO, M. K., YAMADA, Y., MIHARA, M., SATO, S., KITAGAWA, A., MIYAZAKI, J., SATO, W.

1B19 酸化マグネシウム固体中の⁵⁷Mn インビーム・メスバウアー分光実験 (国基督大¹、理研仁科セ²、東理大理³、阪大院理⁴、金大理工⁵、日大生産工⁶、

放医研⁷)長友傑¹、小林義男²、久保謙哉¹、○山田康洋³、三原基嗣⁴、佐藤 涉⁵、宮崎淳⁶、佐藤眞二⁷,北川敦志⁷

【はじめに】⁵⁷Mn ビームを用いた ⁵⁷Fe インビーム・メスバウアー分光法はプローブ原子核のエ キゾチックな化学状態や周囲の物質の電子構造を知る有効な手段である。我々はこれまでに KMnO4やO2固体に ⁵⁷Mn を注入した結果について報告してきた。放射線医学総合研究所の重イオ ン加速器 HIMAC を用いた測定手法の開発により、スペクトルの S/N が格段に向上したため、様々 な物質での測定が可能となった。ここでは、単純な岩塩型構造を持つ MgO 固体へ ⁵⁷Mn を注入し た結果について報告する。MgO:Fe のメスバウアースペクトルについては様々な報告があり、マン トルに含まれるフェロペリクレース(Mg,Fe)O の他にも、酸化鉄と酸化マグネシウムの混合物や、 ⁵⁷Fe をドープした MgO などが報告されているが、これらはいずれも多量の Fe を含むものである。 ⁵⁷Mn を注入する測定法は非常に感度がよいため、極微量のプローブ原子でも測定が可能であるた め、試料中でのプローブ原子の凝集がない MgO 試料中の環境を反映したスペクトルが得られる。

【実験】⁵⁷Mn は、放射線医学総合研究所 HIMAC で ⁵⁸Fe ビームの核破砕反応によってつくり、 選別した。試料には多結晶 MgO 円盤(50 mm $\phi \times 5$ mm; フルウチ化学製)を用いた。⁵⁷Mn の壊変に伴い ⁵⁷Fe から放出される 14.4 keV γ 線を平行平板電子なだれ型検出器 PPAC を用い て測定した。測定法の詳細については本発表に先立って発表する(1B17, 1B18) 通りである。

【結果と考察】⁵⁷Mn を注入した MgO 試料の室温メスバウアースペクトルは Fig. 1 に示すよう に、シングレット(δ = -0.91 mm/s)とダブレット(δ = -0.55 mm/s, ΔE_q = 1.3 mm/s)の組み合わせと して解釈することができる。ただし、検出器を加速しながら測定する発光メスバウアースペ

クトルであるため、速度軸は通常 の透過法による測定とは符号が 逆転している。主成分であるシン グレットは高スピン 2 価鉄であ り、6 個の酸素原子に取り囲まれ た Mg²⁺置換位置の鉄であると帰 属される。ダブレット成分の帰属 には様々なものが可能であるが、 O 欠陥に隣接する Fe 原子や格子 間隙中の Fe 原子などの可能性が 考えられる。密度汎関数法による クラスターモデル計算の結果と比 較することで帰属を行う。

Fig. 1. Room temperature in-beam Mössbauer spectrum of 57 Fe ($\leftarrow {}^{57}$ Mn) implanted in polycrystalline MgO.

In-beam Mössbauer spectroscopy of ⁵⁷Mn implanted into magnesium oxide NAGATOMO, T., KOBAYASHI, Y., KUBO, M. K., YAMADA, Y., MIHARA, M., SATO, W., MIYAZAKI, J., SATO, S., KITAGAWA, A.

研究発表要旨 9月28日(月)

1P01~1P40:ポスター発表 P会場

1P01 AMS を用いた南極ドームふじ氷床コア中の¹⁰Be の分析

 (東北大院理¹,東北大高教セ²,弘前大院理工³,東京大院工⁴,学習院大理⁵, 国立極地研⁶)

○岩崎敦史¹,関根勉²,堀内一穂³,松崎浩之⁴,村松康行⁵,本山秀明⁶

【緒言】過去に南極で降った雪は年々積み重なり、その当時の大気中の成分を取り込んだま ま氷床を形成する。その氷床コア中の成分を分析することにより過去の地球の環境変動に関 する情報が得られる。氷床コアには、過去に降下した¹⁰Beも記録されており、¹⁰Beの濃度を 測定することで太陽活動や地球磁場強度の変動を知ることができると考えられている。

宇宙線生成核種¹⁰Be(半減期 150 万年)は地球に流入する銀河宇宙線と高層大気圏の酸素 原子や窒素原子との核破砕反応によって、大気中で生成される。生成後は、酸化され¹⁰BeO となりエアロゾル粒子に付着し、乾性沈着や降雪によって地上に降下する。銀河宇宙線の流 入量は太陽風や地球磁場強度によって変動するため、¹⁰Beの生成量も変動する。例えば、太 陽活動が活発になると太陽風の強度が増し、地球に到達する宇宙線は減少して¹⁰Beの生成量 も減少する。このように太陽活動と¹⁰Beの生成量には、密接な関係がある。

本研究では試料として南極ドームふじ氷床コアを用い、加速器質量分析法(AMS)で¹⁰Beの定量を行い、得られた結果と宇宙線生成核種¹⁴C(IntCal04)と黒点数(S.K.Solanki et al 2005)の経 年変化を比較して太陽活動の極大、極小の時期を検討した。

【実験】試料はドームふじで採取した氷床コア 20 サンプル(深度 290.5m-300.5m: 推定年代 9477 year~9816 year b2k、1 サンプル 15~20 年相当)を用いた。なお、b2k 年代は西暦 2000 年を 0 年としたときの年代を示す。陽イオン交換樹脂を用いて Be を分離した後、アンモニ ア水を加え Be(OH)₂の沈殿を調製した。それを脱イオン水で洗浄し、約 850°Cで加熱して BeO とした。これを粉末ニオブと 1:1 で混合し、東京大学タンデム加速器研究施設(MALT)におい て AMS を用い¹⁰Be/⁹Be 比を測定した。

【結果と考察】測定結果から氷1g中の¹⁰Be濃度を求め、雪の堆積速度を考慮した¹⁰Beの降下量(フラックス)を算出した。その結果を Fig.1 に示す。¹⁰Be のフラックス変動の範囲は

20×10⁴~55×10⁴ atoms/cm²/y で変動している事が分かっ た。¹⁰Be の増大が見られる 9540,9600~9700,9750 年前 付近は、太陽活動が極小であり、地球への銀河宇宙線 の流入量が多かったと推測される。次に、¹⁰Be の濃度 変動と宇宙線生成核種 ¹⁴C (IntCal04)と黒点数 (S.K.Solanki et al 2005)の経年変化を比較したところ数 十年のずれはあるが、変動パターンに類似性が見られ た。この年代のずれはアイスコアの年代モデルの不確 実性によるもので、¹⁴C (IntCal04)、黒点数(S.K.Solanki et al 2005)の経年変化と比較することでアイスコアの年 代モデルを補正することも可能と考える。

9400 9500 9600 9700 9800 9900 Age (years b2k) Fig.1. Secular variation of ¹⁰Be flux

AMS Analysis of ¹⁰Be in the Dome Fuji ice core, Antarctica IWASAKI, A., SEKINE, T., HORIUCHI, K., MATSUZAKI, H., MURAMATSU, Y., MOTOYAMA, H.

1P02 日本列島における露出炭酸塩岩の長期的侵食速度:

カルサイト中の宇宙線生成核種³⁶Clを用いた推定
 (東大・工¹、筑波大・応用加速器²、筑波大・RIC³、筑波大・生命環境科学⁴)
 〇松四雄騎¹、笹 公和²、末木啓介³、高橋 努²、長島泰夫²、松倉公憲⁴

【はじめに】 炭酸塩岩は地表面積の約20%を占めており、その化学風化(溶解)速度は珪酸 塩岩のそれに比べて2-4オーダー大きい.このため、炭酸塩岩の化学風化は、気圏および岩 圏の炭素を水圏へと輸送する上で重要な役割を果たしていると考えられる.従来、岩石の化 学風化による炭素の循環フラックスの推定には、大河川の水質データなどに基づいたマスバ ランスによるアプローチがなされてきた.しかしこの手法では、炭酸塩岩と珪酸塩岩それぞ れの風化速度や、河川の溶存成分に対する寄与率などが十分に検討されておらず、気候変動 やテクトニックな変動といった環境変化に対し、岩石の化学風化システムがどのような応答 をするのかについての知見を得ることは難しい.また、炭酸塩岩の分布域では、気候環境に 応じた多様なカルストがみられるが、そのような地形的特徴が、どのような速度で、どのよ うな時間スケールで形成されるのかについて、古くから地形学的な興味が持たれている.本 研究では、カルサイト中の宇宙線生成核種³⁶Clを用いて、亜熱帯から亜寒帯の環境下におけ る石灰岩の長期平均的な削剥速度を定量し、その気候依存性を定式化する.

【方法】亜熱帯気候に属する沖縄地方から,亜寒帯気候に属する北海道北部まで,日本列島 各地の付加体炭酸塩岩地域(9 地域)を対象に試料採取を行った.各地域において丘頂部の 数地点を選択し,地表面に露出したピナクル先頂部から数百グラムの岩石試料を採取した. 岩石試料はミルで粉砕し,0.5-0.125 mmに篩過・整粒して洗浄したのち,硝酸によるエッチ ングで粒子表面の10%を溶解することで,大気起源の³⁶Clおよびその他の汚染を取り除いた. 乾燥させた試料を~20g秤量し,同位体希釈のため99atom%の³⁵Clキャリアを1 mg添加し た.試料は硝酸を用いて溶解したのち,AgCl沈殿を取り出して加速器質量分析用の標的とし た.Cl同位体比の定量は,筑波大学研究基盤総合センター応用加速器部門の加速器質量分析 システムを用いて行った.また,日本原子力研究開発機構のJRR-3M原子炉を用いた即発ガ ンマ線分析によって,岩石試料中の主要元素および中性子吸収核の濃度を求め,³⁶Clの生成 率を決定した.得られたデータを用いて逆解析モンテカルロシミュレーションを行い,炭酸 塩岩の削剥速度を決定した.

【結果および考察】測定された³⁶Cl濃度は10⁵-10⁶ atom g⁻¹のオーダーであり,核種の生成率 (20-40 atom g⁻¹ yr⁻¹)からみて,10⁴-10⁵ 年スケールでの長期平均的な地表面の削剥を反映し ているものと推定された.計算された地表面の削剥速度は、~15-60 mm kyr⁻¹であり,温帯に 区分される日本列島の中央部において低い値を示し、冷帯に属する北海道や東北北部,およ び亜熱帯の沖縄で相対的に高い値を示した.各地域における現在の気候条件を用いてこの傾 向のモデリングを行ったところ,気温,降水量,凍結融解交代日数に依存して,カルスト地 形の削剥過程における化学的作用(溶解)と物理的作用(凍結破砕)の相対的寄与が変化し ていることが示唆された.特に西南日本における溶解作用については、アレニウスの式をベ ースにした平均気温と年間降水量の関数として表現可能であることがわかった.

Long-term denudation rates of karst surfaces in Japan: estimates from cosmogenic ³⁶Cl in calcite MATSUSHI, Y., SASA, K., SUEKI, K., TAKAHASHI, T., NAGASHIMA, Y., MATSUKURA, Y.

1P03

土壌有機物中の³⁶Clに対する測定の試み

(筑波大院・数理物質¹、筑波大・AMS²、東大・MALT³、高エネ研⁴) 〇天野孝 洋¹、末木啓介¹、玉理美智子¹、北川潤一²、笹公和²、長島泰夫²、高屋康彦²、 高橋努²、大木俊行²、木下哲一²、戸崎裕貴²、松四雄騎³、別所光太郎⁴

【序論】

塩素の放射性同位体である³⁶Cl(半減期:約30万年)は、大気中では主に宇宙線による⁴⁰Ar の核破砕反応で生成されている。しかし、1952年から1958年にかけては、水上核実験の影響を受けて大量に生成され、一時的に大気中に放出された。³⁶Clは大気中の安定塩素と同様 に、雨や雪とともに地上へ降下するため、核実験期及びその後数年の³⁶Cl降下量は大幅に増加している。このことを利用した研究の例として、地下水の滞留時間の推定等がある。

土壌中における³⁶Clは、塩化物や有機塩素化合物などが起源として考えられ、塩素循環の トレーサーとなる可能性や、土壌における放射能汚染の指標となる可能性を持っている。当 研究室では、土壌試料に対して純水や希硝酸で抽出した塩化物中の³⁶Clを主な対象にしてき たが、今回は有機物中の³⁶Clに注目し、土壌を燃焼する方法について検討した。

【実験】

筑波大学アイソトープ総合センター周辺の表層土壌 (RIC) を用いて、試料処理方法の検討 を行った。0.01 mol/1 の HNO₃ 水溶液で土壌中の塩化物を抽出し、抽出した溶液に活性炭 2 g を加えて 3 時間振とうした。1 日放置後、溶液と活性炭を分離し、これを抽出サンプルとし た。抽出に使用した土壌と活性炭は、酸素気流中約 1000 ℃ で 2~3 時間燃焼し、発生した 気体を、Na₂SO₃ を約 1 g 加えた 1.25 mol/1 NaOH 水溶液でトラップした。燃焼終了後、トラ ップ溶液に 30 % H₂O₂ 水溶液を加え、燃焼サンプルとした。それぞれのサンプルに濃 HNO₃ 水溶液を加えて酸性にし、さらに 0.03 mol/1 AgNO₃ 水溶液を加えて AgCl 沈殿を生成させた。 その沈殿を精製し、乾燥させた後、AMS によって同位体比 ³⁶Cl/Cl の測定を行った。

また、青森県六ヶ所村で採取した深さ1m までのコアサンプル土壌を用いて、³⁶Cl/Cl と深 度の関係を調べた。

【結果】

RIC 土壌において、燃焼サンプルの ³⁶Cl/Cl = (9.8±1.0) ×10⁻¹⁴ は抽出サンプルの ³⁶Cl/Cl = (6.0±0.5)×10⁻¹⁴ よ りも高い値を示し、土壌全量を燃焼させたサンプルは ³⁶Cl/Cl = (8.5±0.7)×10⁻¹⁴ と、燃焼サンプルと抽出サン プルの間の値を示した。このことから、土壌中の塩素 の起源の違いによって、³⁶Cl/Cl 値も異なる可能性があ ることがわかった。

コアサンプル土壌と³⁶Cl/Cl と深度の関係を図1に示 す。抽出サンプルの³⁶Cl/Cl 値は、表層から約30 cm 深 にかけて徐々に小さくなっていき、それ以降はほぼ一 定となっている。一方燃焼サンプルの³⁶Cl/Cl 値は、深 くなるに従って増加するという傾向が観測された。

抽出サンプルと燃焼サンプルの間に相関性が見られなかった。今後、燃焼サンプルに含まれている塩素の起源について、さらなる議論が必要である。 Measurement of ³⁶Cl in organic substance of soil

AMANO, T., SUEKI, K., TAMARI, M., KITAGAWA, J., SASA, K., NAGASHIMA, Y., TAKAYA, Y., OKI, T., TAKAHASHI, T., KINOSHITA, N., TOSAKI, Y., MATSUSHI, Y., BESSHO, K.

1P04 JAEA-AMS-TONO による¹⁴C 測定法の改良

(原子力機構¹、(株)ペスコ²)○國分(齋藤)陽子¹、西澤章光²、大脇好夫²、 西尾智博²、鈴木元孝¹、石丸恒存¹

【はじめに】

日本原子力研究開発機構 東濃地科学センターではタンデム型加速器質量分析装置を用い て機構内部及び外部機関から受け入れた試料中の¹⁴C年代測定を行っている。これらのデー タは、放射性廃棄物の地層処分における地質環境の安定性の評価のほか、年代決定を必要と する地球科学分野などの研究に寄与している。現在、グラファイト量として1mgの試料が必 要であるが、近年さらに少量の試料を対象とした測定要求が増えている。そのため、本研究 では、極微量の試料での測定に対応できるよう、装置の改良及び試料調製方法の検討を行っ たので報告する。

【実験】

1. 装置の改良

微量試料では得られるイオンビーム量が少ないため、精度のよいデータを得るためには安 定したビームが必要である。イオンビームの発生量の安定性に影響を与えているイオン源セ シウムオーブンの温度に注目し、その温度制御システムの改良を行った。改良では既存の温 度制御システムに温度調整器及び熱電対、リレー等を装着した。これらの改善効果を調べる ため、標準試料のシュウ酸(NIST HOxII)を測定した。

2. 試料調製方法の検討

試料が少ない場合、また既にグラファイトに調製された試料が少ない場合の2通りの試料 調製方法等について検討した。試料は標準試料の NIST HoxII、石灰華(IAEA C2)、大理石

(IAEA C1)を用いた。試料が少ない場合については、試料量を所定量の100%、75%、50%、25%と段階的に減少させて検討した。また、既にグラファイトに調製された試料が少ない場合については、単体ではカソードに加圧整形できない試料量 0.25 mg と鉄粉 1 mg を下記の2 種類の方法で加えて測定試料を作製し、通常と同様 12 回の繰り返し測定を行い検討した。 方法 1: グラファイト及び鉄粉を混ぜた後、カソードに詰め加圧成形する。

方法2:カソードにグラファイトを入れた後、鉄粉を加え加圧成形する。

【結果及び考察】

1. 装置の改良

イオン源セシウムオーブンの温度制御システムの改良により、改良前は1回の測定(約40時間)でオーブン温度が約5℃ぐらい変動していたが、改良後は1℃以内に制御できるようになった。また NIST HOxII の低エネルギー側¹²Cの測定中の変動は、約10%だったものが5%以下となり、ビームの安定性は改善された。

2. 試料調製方法の検討

試料量が少なくなると生成するグラファイト量も少なくなると考えられるが、鉄粉に反応 させ作製したグラファイト試料を観察したところ、特に外見上の違いは見られなかった。ま たカソードに成形できない量のグラファイトに鉄粉を加える試料調整方法では、方法 1、2 とも測定可能な試料を作製することができた。方法 1 の¹⁴C カウント数は、繰り返し測定中 比較的一定であった。一方、方法 2 のカウント数は方法 1 に比べ、測定し始めは高いものの 徐々に減少する傾向を示した。発表では、各方法の¹⁴C/¹²C 比の結果についても報告する。

Improvement of ¹⁴C measurement by JAEA-AMS-TONO

Saito-Kokubu, Y., Nishizawa, A., Ohwaki, Y., Nishio, T., Suzuki, M., Ishimaru, T.

1P05 微弱放射線測定用タングステン遮へい (金沢大 LLRL) ○浜島靖典

【はじめに】 微弱放射線測定の指標として FOM (Figure Of Merit)が用いられる。S をシグナ ル強度, B をバックグランド(BKG)強度とすると, FOM = S²/B で表される。FOM を大きくす るには,検出効率を上げ(試料の減容等も含む),長時間測定を行って,Sを大きくすること はもちろんであるが,B を小さくすることも重要となる。B を小さくする方法の1つは,効 果的な遮へいを行うことであり,密度が大きく放射性不純物が少ない遮へい材を用いる。よ く用いられる材料は Pb (密度 d=11.3 g cm⁻³)であるが,通常の Pb には半減期 22.3 年の²¹⁰Pb が 含まれる。²¹⁰Pb は 46.5 keV のガンマ線(放出率 4.3%)を放出する。ガンマ線測定の際に問題と なるのは,46.5 keV の他に娘核種の²¹⁰Bi から放出される 1.16 MeV のベータ線に起因する制 動放射線がある。また,Pb の X 線が妨害する場合もある。これに対処するため,Pb の内側 に Cu (同 8.9)や Hg (同 13.5)を用いたり,Fe (同 7.9)を遮へい材とする場合もある。尾小屋地下 実験室(OUL)の Ge 検出器には,通常鉛による遮へいの内側に,製造後 200 年以上経過したと 思われる約 4cm 厚の Pb (通称金沢城 Pb)を用いて B を小さくしている。金沢城 Pb はもはや入 手不可能であため,本研究では,金沢城 Pb に代わる遮へい材として,最近しばしば目にする 密度の大きい W (同 19.3)遮へい体に注目し,微弱放射線測定に利用可能か検討した。

【実験】 W 粉を焼結し,円柱(外径×高さ×厚さ:130 mm×200 mm×10 mm)と,円盤(外径× 厚さ:130 mm×10 mm)を試作依頼した。 焼結 W の比重は 17.9 であった。テストに使用した OUL の井戸型 Ge (Ge 結晶の直径×高さ:68 mm×70 mm,結晶の井戸径×深さ:22 mm×54 mm)には金沢城 Pb で作成したほぼ同じ内径で高さ×厚さは約 150 mm×約 40 mm の円柱及びほぼ同形の円盤 を用いている。これと W 遮へいを交換し

を用いている。これと w 述べいを交換 BKGを測定した。

【結果と考察】 焼結 W 遮へいの BKG スペ クトルを図 1 に示す。比重を考慮した厚み では金沢城 Pb 遮へいの約 2/5 しかなく, 形 状も異なっているので単純には比較でき ないが, 焼結 W 遮へいの 50 KeV から 2000 KeV までの積算 BKG 計数率は, 金沢城 Pb 遮へいの 1.6 cpm から 7.9 cpm 増加し 9.5 cpm となった。主なピークは ⁴⁰K (1461 keV

Fig.1 BKG spectrum of W shield.

で 0.31 cpm, 金沢城 Pb の 44 倍), ²¹⁴Pb, ²¹⁴Bi (609 keV で 0.13 cpm, 同 26 倍), ²²⁸Ac, ²⁰⁸Tl, などであった。最も低エネルギーのピークは W の X 線である。²¹⁰Pb は見られない。また, 70 keV から 200 keV の間にピークは全く見られない。この焼結 W 遮へいは,地上で長時間放 置し, OUL に持ち込み後直ちに設置し測定したが,環境中性子放射化で生成する¹⁸⁷W (半減 期 23.7 時間)の 686 keV はごく僅かであった。今回試作した焼結 W 遮へいは, OUL の遮へい に用いるには BKG が高い。しかし,積算 BKG 増加分を考慮すると, 70 keV から 200 keV の 測定や U, Th 系列以外の核種の測定には利用できる可能性がある。

Tungsten shield for low level counting HAMAJIMA Y.

1P06

保障措置環境試料の正確な極微量分析のためのイオン交換分離法の開発* (原子力機構) 〇宮本 ユタカ、安田 健一郎、間柄 正明、木村 貴海

【はじめに】秘密裡に行われる核開発など未申告原子力活動の痕跡を探知するための技術的 手法として、IAEAは原子力関連施設の内部及び周辺を綿製の布で拭き取って採取した極微量 核物質の同位体比分析を導入している。我々はその分析に必要なUとPuの極微量化学分離法 を開発している。ICP-MSによる極微量分析において分析試料のW濃度がUよりも高いと、U 同位体のピークに重なるWの分子イオン(¹⁸⁴W¹⁶O₃¹H(233)、¹⁸⁶W¹⁶O₃(234)、¹⁸⁶W¹⁶O₃¹H(235)) が正確なUの同位体分析を妨げる。また、ウラン分析を行うために我々が適用している塩酸系 陰イオン交換分離法ではWがUとともに溶出してしまうため、分離したU分画からWを陽イオ ン交換などの分離法で除去する必要があった。これには器具の準備や分離作業に時間がかか る上、試料処理作業の増加に伴って試薬や樹脂等からUが混入する機会が増えるなどの問題が あった。そこで化学分離作業を簡素化するため、既存のUとPuの陰イオン交換分離法にUとW の分離過程を追加することを考えた。HCl+HF混合溶媒によるWのイオン交換分離が効果的 であったので報告する。

【実験方法】ポリエチレン製カラム(4mm ϕ ×70 mm [カラム容量(CV) 0.84 ml])に詰めた陰イオ ン交換樹脂(三菱化成製CA08P, Cl⁻形、75-150 μ m)をイオン交換分離に用いた。試料は濃度既知 のICP-MS校正用W溶液(試料量:9 ng)と²³³Uスパイク溶液(試料量:2.2 ng)を混合したものを用 いた。9 M HCl溶液に調整した試料をカラムに流してUとWを吸着させた後、組成と液量を変 えたHCl + HF混合溶媒を流して両元素を分離した。得られた溶出液を2%硝酸溶液に調整し てWとUをICP-MSで定量した。両元素の分離性能は溶離曲線を作成して検討した。

【結果と考察】異なる2つの方法、①U分離に先立ちWを除去する方法と、②Wを溶出させずにUを分離する方法それぞれに最適な混合溶媒の組成を検討した。①の方法に対しては、溶離液のHCl濃度を7M~9Mと変えてもWの溶離ピーク位置は変わらなかったが、8Mのとき溶離ピークの幅が最も鋭くなった。また、HF濃度を0.2Mから1Mへと高くするに従っ

てWは早く溶離したが、Wとともに溶出するU 量も増加した。8 M HCl + 0.5 M HF 混合溶媒を 10 ml (12 CV)で分離した場合、W 分画にはU量 の 0.5%程度しか溶出せず良い分離性能が得ら れた。②の方法に対しては、0.1 M HCl + 1 M HF を用いた分離が効果的であった。図1にUとW の溶離曲線を示す。溶離液を 10~15 ml (12~ 18CV)流すことでUをほぼ完全に回収でき、か つWの溶出率を 0.1~0.5%に抑えることが出来 た。ウラン溶出分画におけるWの除染係数は① が 500、②が 700 であり、両者ともに実試料に 応用できることが分かった。

*本報告には文部科学省からの委託で実施している「保障措置環境分析開発調査」の成果の一部が含まれる。 Ion-exchange separation for accurate trace analysis of environmental samples for safeguards MIYAMOTO, Y., YASUDA, K., MAGARA, M., KIMURA, T.

1P07 Particle size distributions of ⁷Be-aerosols in surface air at Nagano City

(Fac. of Edu., Shinshu Univ.) OH. Muramatsu, T. Konuma, and A. Miyajima

Introduction For the particle size distribution of radioactive aerosols, several observations have been made so far in various radionuclides, mainly in fission products released into atmosphere in nuclear accidents. For the aerosol particles attached by ⁷Be, scarce observations have been reported due to its low concentrations in surface air. Because of not only being in low radioactivity concentration but also having extremely small diameter, suitable method for the determination of its size distribution has been hardly found for ⁷Be-aerosol particles. Then, for this kind of radioactive aerosols, it is almost impossible to utilize other techniques such as diffusion method (parallel-plate or screen mesh diffusion battery) that is quite effective to aerosols in submicron region.

Experimental Air samplings were carried out at the sampling station on the roof of the building (height above ground level 12 m) located in our university campus ($36^{\circ}39'N$, $138^{\circ}12'E$). Aerosol particles were collected on glass fiber filters (GB100R, Toyo Roshi Kaisha Ltd.) using the Andersen-type classifier (AH-600, SIBATA) combined with the high volume air sampler (HV-500F, SIBATA). When a constant flow rate of 566 l/min is adopted, according to their particle size, aerosols are collected on five each glass fiber filters, i.e., over 7.0 µm in the first-stage, 3.3-7.0 µm in the second stage, 2.0-3.3 µm in the third stage, and 1.1-2.0 µm in the fourth stage, respectively. Aerosols smaller than 1.1 µm in diameter are finally collected on a back-up filter. Typical total volume was

about 10000~15000m³. The 477-keV γ -rays from ⁷Be in the sample was counted by a hyperpure germanium detector (HPGe; CANBERRA) connected with a 4k-channel pulse height analyzer for (3-4)×10⁵ s.

Results and discussion About 80% of collected activities were found in the back-up filter, which means that the majority of ⁷Be activity would attached to aerosols with the diameters less than $1.1 \mu m$. (See Fig.1) This has been already known and no information has been given for sub-micron aerosols, when using this type of classifier. However, apart from sub-micron size aerosols, three middle data in Fig.1, which certainly correspond to particle-size ranges of 3.3-7.0, 2.0-3.3 and 1.1-2.0 µm, were used for the estimation of Activity Median Aerodynamic Diameter (AMAD) under the assumption that the particle size distribution of ⁷Be-aerosols in surface air is in a lognormal and unimodal distribution. (See Fig.2) Estimated AMADs in early summer and in autumn were 0.43 µm and 0.55 µm, respectively, which should correspond to the mean value of so-called accumulation mode aerosols formed by coagulation of ultrafine aerosols.

Fig.1 Observed ⁷Be activities in each stage.

Fig.2 Probability plot under the assumption that the particle size distribution of ⁷Be-aerosols in surface air is in a lognormal and unimodal distribution.

Particle size distributions of ⁷Be-aerosols in surface air at Nagano City MURAMATSU, H., KONUMA, T., MIYAJIMA, A.

1P08 降水・落下塵中に含まれる放射性核種の長期測定

(海洋大院・海洋科学技術¹、海洋大・海洋環境²)〇鈴木芙美恵¹、大橋英雄²

【はじめに】

天然及び人工の放射性核種はエアロゾルに吸着され、降雨等により地表に降下し、大気中から除去される。中でも²¹⁰Pbは土壌起源物質の指標、⁷Beは上層大気の輸送や大気物質の鉛直輸送のトレーサーとして用いられてきた。そこで本研究では、これらを含む降下物を観測することにより、黄砂等の風送ダストやエアロゾルの挙動を調べることを目的とした。

【実験】

有効面積 0.2m²の水盤を設置し、降水及び落下塵を 2005 年から 2009 年にかけて、1 ヶ月間隔 で採取した。これを 2 段カラム装置を用いてイオン交換樹脂(POWDEX)に吸着させ、乾燥・ 定型したものを試料とし、東京大学宇宙線研究所(ICRR)内地下実験室に設置した Ge 半導 体検出器で測定を行った。さらに試料を灰化したものも同様に測定を行い、これらのデータ を解析し、⁷Be, ²¹⁰Pb, ⁴⁰K, ¹³⁷Cs の降下量・降水中濃度等を求めた。なお、降水量は最寄り 地点のアメダスデータを用いている。

【結果】

本研究期間では⁷Be,²¹⁰Pb ともに降下量・降水中濃度に顕著な季節変動等は見られず、降水 量に依存している可能性が高いことがわかった。灰化試料については、現在測定・解析を継 続中である。

図1 7 BeのFlux と降水量の比較

Long-term measurement of radioactive nuclides in rainfall and fallen dust SUZUKI, F., OHASHI, H.,

1P09

広島原爆フォールアウト²³⁶Uの探索

(金沢大・LLRL¹,広島大・理²,広島大・原医研³,京大原子炉⁴,Wien 大⁵)
 〇川合健太¹、坂口 綾²,星 正治³,今中哲二⁴,Steier P.⁵,山本政儀¹

【はじめに】

広島原爆由来のフォールアウト分布を調査することは、原爆後の残留放射線による被曝線 量評価の観点から非常に重要である。これまで土壌中の¹³⁷Csを用いての分布調査が数多くな されてきたが、未だ解決に至っていない。広島に投下された原子爆弾がウラン爆弾であるこ とに着目すると、²³⁵U(n,γ)核反応で²³⁶U (T_{1/2}: α-decay, 2.342x10⁷ y)が生成して可能性がある。 原爆由来の²³⁶U の生成量は、おおよそ 4.7×10²² (²³⁶U 原子数)と試算される。本研究では、タ ンデム加速器質量分析計 AMS による微量²³⁶U 測定を試みると共に、広島表層土壌を用いて 広島原爆由来のフォールアウトの分布解明の可能性を試みた。

【実験】

分析試料は、広島大学から譲渡された土壌(昭和 51、53 年度採取、表層 0-10cm まで)及び広島(7 地点)、石川(3 地点)の計 10 地点で採取した未撹乱と考えられる土壌(2008,2009 年採取、 表層 0-30cm まで)を用いた。²³⁶U (²³⁸U) は抽出、化学分離後、ウィーン大学の AMS により ウラン原子数比 (²³⁶U/²³⁸U) 測定を行い、抽出 ²³⁸U の測定はα線測定により行った。²³⁶U/²³⁸U 原子数比及び抽出 ²³⁸U 量から、土壌中に含まれる ²³⁶U 蓄積量を見積もった。また土壌中のフ ォールアウト核種である ¹³⁷Cs 、²³⁹⁺²⁴⁰Pu をそれぞれγ線測定、α線測定 (一部 ICP-MS) によ り測定し、広島原爆とグローバルフォールアウト ²³⁶U の識別には, ²³⁶U/¹³⁷Cs 比および ²³⁶U/^{239,240}Pu 比での検討を行った。

【結果と考察】

広島大学から譲渡された表層土壌(0-10cm, 0-30cm)を用いた測定結果(²³⁶U、²³⁹⁺²⁴⁰Pu)を Fig.1 に示した。石川県で採取した B.G.としての土壌(0-30cm)の ²³⁶U/²³⁹⁺²⁴⁰Pu 比は、(1.56±0.10)× 10¹¹(atoms/Bq)で、グローバルフォールアウト ²³⁶U の存在を確認した。広島土壌中に含まれる

²³⁶U は 2.0x10¹¹-2.6x10¹³ atoms/m²の範囲で検出さ れたが、²³⁶U/²³⁹⁺²⁴⁰Pu 比 (Fig.1)で比較すると石川 の²³⁶U/²³⁹⁺²⁴⁰Pu 比との有 意な差は確認できなかっ た。このことから、広島 土壌中の²³⁶U はグローバ ルフォールアウトによる ものが支配的であり、広 島原爆由来の²³⁶U の寄与 は非常に少ないことが示 唆された。本年会では、 さらに広島、石川土壤に

Fig.1 Results of radionuclides in surface soil samples from Hiroshima Prefecture

ついて²³⁶U、¹³⁷Cs、²³⁹⁺²⁴⁰Puの深度分布の結果を示し、これらの核種の挙動についても議論 を行う予定である。

Research of Local Fallout ²³⁶U produced by Hiroshima atomic bomb KAWAI, K., SAKAGUCHI, A., HOSHI, M., IMANAKA, T., YAMAMOTO, M.

1P10 天然水中のラドン濃度 (大妻女子大・社会情報)〇堀内公子

【はじめに】水は生命の源であり人間をはじめとして地上のあらゆる生命にとって欠くことの出来ない貴重な環境資源である。近年人間活動の拡大と発展に伴って、ますます水の需要が拡大されて来ており、貴重な水の保護と活用の向上のため、国や各地域で「名水」の指定が行われている。天然水には湧水、地下水、河川水、温泉水等多くの種類があるが、そのいずれにも多かれ少なかれラドンが含まれている。天然水の基本データ収集の一環として1985 年環境庁が全国規模で指定した「名水百選」とその周辺の天然水中のラドン濃度を測定した。

【実験】 測定はトルエン抽出-液体シンチレーション測定法により行った。同時に pH,電気伝 導度も計測した。

【結果及び考察】

結果の一部を表1に示した。ラドン濃度が最も高かったのは広島県府中町の「出合清水」 であり、長野県飯田市の「猿庫の泉」がそれに続いた。

No.	名水の名称	水の形態	°C	μ S/cm	pН	Rn (Bq/l)
4	富田の清水	湧水	17.3	205.4	6.4	5.99 ± 0.08
11	力水	湧水	12.3	186.3	7.6	14.5 ± 0.07
21	風布川・日本水	湧水	10.6	180.5	8.5	1.07 ± 0.03
23	お鷹の道湧水群	湧水	15.4	171.5	6.5	21.5 ± 0.07
36	瓜割の滝	湧水	11.9	91.8	8.7	12.3 ± 0.08
42	猿庫の泉	湧水	11.4	36.4	7.1	66.0 ± 0.15
63	天の真名井	湧水	13.9	116.6	9.7	3.84 ± 0.07
70	出合清水	湧水	18.7	197.0	6.2	98.9 ± 0.26
86	島原湧水群	湧水	16.3	202.6	6.2	15.2 ± 0.13
93	竹田湧水群	湧水	16.7	137.3	7.7	2.25 ± 0.06

表 1 測定結果(一部)

「出合清水」 広島市の東側府中町の住宅街のまん中に 2000 年も前から湧出し地域の人々の 生活用水として利用されている。水源は榎川の上流、水分峡の奥から地下を通って湧き出し ていると言われている。この付近一帯の基盤はペグマタイト(巨晶花崗岩層)でトロゴム石、 褐れん石等多数の放射性鉱物を含んでいる。湧水は中国山脈の降水を起源とした伏流水で基 盤岩の影響によりラドン含有量が高くなる。

「**猿庫の泉**」 飯田市の北西にそびえる風越山の南麓に湧出している。風越山は中央アルプス山 系の一部をなし、白亜紀の花崗岩を主とした深成岩類で構成された山である。昔から茶の湯に適 した水として知られている。

ラドン濃度分布図を描いてみるとほとんどの名水が 25Bq/l 以下である中で上記の湧水はかけ離れて高いラドン濃度を示した。多くの名水は水道水源、生活用水、茶の湯用水等として利用されているが、近年湧出量の減少や人為的汚染が心配されるものも出て来ている。

Radon concentration in natural water HORIUCHI, K.

1P11 水試料からのラドンの散逸に関する実験的検討 (金沢大院自然¹,金沢大理工²)

○山田記大¹, 上杉正樹¹, 佐藤 渉², 横山明彦², 中西 孝²

【はじめに】 ラドン(Rn)分析用試料水を採取する際, Rn 散逸防止が不可欠である。このような観点に立って地下水湧出点からの地表距離とともに Rn 濃度がどのように変化するかをフィールドで測定した結果, Rn 濃度は距離とともに減少し,緩やかに流れる方が速く流れる方よりも散逸の割合が少ないことが分かった。そのほか気温や気圧,大気との接触面積等が散逸率に影響すると考えられる。また²²²Rn の娘核種である²¹⁰Pb や²¹⁰Po を測定する際には試料輸送時における揺れや輸送時間等によって Rn 散逸量は変化すると考えられる。本研究では,水試料からの Rn 散逸に関係すると考えられる種々のパラメーターについて順次検討することを開始した。

【実 験】実験に使用した水試料は、一般に Rn を多く含むとされる地下水である。石川県 金沢市の医王山中腹の湧水地点から地下水が流れ出ているので、その地下水をそのまま使用 した。実験は、Rn 散逸に影響があるとされるパラメーター(流速、時間、温度、圧力、水深 等)を個別に変動させるよう、ほかのパラメーターを固定し、注目しているパラメーターの みを変動させ、変動前後のデータから Rn 散逸率を検討した。水試料中の Rn を測定するため に、試料水 50 mL とシンチレータ(トルエン 500 mL に PPO 2 g と POPOP 0.05 g を溶解して 調製) 50 mL を 100 mL のテフロンびんに入れ、直接法にて液体シンチレーションカウンター を用いて測定した。

【結果と考察】パラメーター変動の一例を図1に示す。100 mLの水試料をスターラーで撹拌し, 撹拌の回転数と攪拌時間によって Rn がどのように散逸するかを検討した結果である。撹拌条件以 外の条件が一定のとき,0 rpm では5分放置後の値以外は Rn 残留率がほぼ100%に近い値を示し, 20分程度の静置でもほとんど散逸しないことが分かった。また 60 rpm, 300 rpm で攪拌した結果, 5分間の攪拌で Rn 残留率が 90%~80%近くに減少することが分かった。繰り返し実験が必要で あるが,図1を見る限り,攪拌時間に比例して Rn 残留率が減少することが分かった。このことか

Experimental study on radon loss from water sample YAMADA, N., UESUGI, M., SATO, W., YOKOYAMA, A., NAKANISHI, T.

1P12 新潟・山形県境金丸地域のボーリング地層水中コロイドのウラン系列核種 (産業技術総合研究所 地質調査総合センター)〇金井 豊・関 陽児・奥澤康一

【はじめに】環境における汚染物質の地下水移行に関しては、従来から関心 の高い課題であるが、近年溶存態での移行と共に、微細なコロイドという形態での挙動に関 心が高まっている。特に地下水汚染や高レベル放射性廃棄物の地層処分に関連したコロイド 挙動については、詳細な挙動を把握することが急務となっている。一方、ウランは天然の放 射性核種であると同時に高レベル放射性廃棄物中にも含まれている核種であり、その天然で の挙動はナチュラルアナログとして有用な知見を提供するものとして注目を集めている。し かし、地層水中のウラン系列核種とコロイド挙動等については、未だ研究例が少なく明確な 検討がなされていない。本研究では、地下水の実態把握のために採取された地下水について、 ウラン系列核種とコロイド挙動を調べたので、これらの結果の一部について報告する。

【試料採取と実験方法】山形県と新潟県の県境付近に位置する金丸地域は、ウラン鉱徴探査 地域として昭和 30 年代から調査されてきた。当地域周辺は、白亜紀の岩船花崗岩類の上に、 新第三紀の釜杭層(主としてアルコーズ質砂岩・礫岩)と上位の下関層(泥岩・ベントナイ ト層)などが堆積している。当地域に掘削された孔底深度約 30mの Br1, Br2 の他にマルチパ ッカー仕上げの Br3-3(孔底深度約 45m)、さらに山頂付近の Br4(孔底深度約 55m)等の井戸 から定期的に地層水を採取した。その一部について数回にわたり水質やウラン系列核種を検 討した。一方、地層浸透水や湧水などを現地で採取直後に 0.1、0.2、0.45、0.8、1.0µmの メンブランフィルターでろ過し、酸を加えて実験室に持ち帰って分析、または、ポリタンク に試料水を採取し、実験室に持ち帰ってから公称分画分子量1万、2万、5万、10万の限外 濾過膜でろ過して分析などをした。さらに予察的に Br3-3 井戸のウラン濃集部付近の深度 9.95-11.05mで採取された未処理試料(酸が無添加)を用い、0.45µm、50nmメンブランフィル ター、及び分画分子量10,000Dのウルトラフィルターユニット USY-1(アドバンテック社製) を用いてろ過し、分離した各フラクションの分析を行った。

【結果と考察】 掘削初期の井戸からの地層水では、Br1 および Br2 で採取した 2002 年の地 層水のウラン系列核種を分析したところ、浅部地層水で低ウラン、深部地層水で高ウランと いう結果、および U-234/U-238>1 であり、浅部地層水で Th-230/U-234 >1、深部地層水で Th-230/U-234<1 という結果が得られた。2005 年 1 月、5 月も継続して調査したところ、 Th-230/U-234<1 という結果であり、Th-230 の過剰は認められなかった。これらは大気開放系 のボーリングで上下の坑内水の移動や混合の可能性があるので、マルチパッカーシステムを 有する Br3-3 における地層水の調査も行った。その結果、最上部の地層水で Th-230/U-234 >1 となり、コロイドや懸濁物の可能性が示唆された。地層浸透水や湧水などではウラン濃度の 変化はあまり大きくなく、溶存態が多いものと推定された。Br3-3 井戸の深度 9.95-11.05m(ウ ラン濃集層準)での地層水の粒径毎の分析結果でも、全ウラン濃度は、(0.9±0.1) ppb 程度 と見積もられ、これまでの同層準の地層水(1.4ppb)と比べ、幾分低いものの同じオーダーで あり、粒径毎に分画したウラン濃度も懸濁物態では低く、微細なコロイド態もしくは溶存態 としての濃度の方が高いと推定された。これについては、今後さらに検討する必要がある。

Uranium series nuclides bound to colloids in borehole groundwater in Kanamaru area, Niigata and Yamagata Prefectures

KANAI, Y., SEKI, Y. and OKUZAWA, K.

1P13 腐植酸を含む土壌における金属イオンの吸着形態 (東大院総合)○伊藤祐生、小豆川勝見、松尾基之

【はじめに】天然の土壌中には多量の腐植酸が含まれており、土壌に対する金属イオンの吸 着量に大きな影響を与えている。そのため土壌環境を正確に評価するには腐植酸の寄与を検 討することは重要であるが、吸着量と吸着形態の関係に着目した研究はあまりなされていな い。そこで本研究では日本の土壌に多く含まれている非晶質粘土鉱物のアロフェンを用いて 吸着量と吸着形態の関係を検討した。腐植酸を機器中性子放射化分析にかけたところ、金属 イオンではカルシウムが最も多く含まれていた。このことから腐植酸とカルシウムは親和性 が高いと考え、本研究では金属イオンとしてカルシウムを使用した。

【実験】アロフェンは(株)白川製作所により提供された合成アロフェンを使用した。腐植酸は 市販のものをさらに精製して使用した。アロフェン 0.1 gに 5×10⁻³ mol dm⁻³塩化カルシウム 水溶液 5 cm³ と pH5、7、9、11 の 20ppm 腐植酸水溶液 5 cm³を加えたものを調製し、24 時間 振とうした。この時、コントロールとして腐植酸を含まない溶液でも同様の操作を行った。 振とう後、溶液をろ過し、カルシウム濃度を測定して反応前後の濃度の差からカルシウムの 吸着量を求めた。また、吸着試料のカルシウムの K 吸収端 EXAFS スペクトルの測定を高エ ネルギー加速器研究機構 Photon Factory の BL-9A において蛍光法により行った。

【結果と考察】アロフェンのIRスペクトルを測定したところ、ヒドロキシル基を確認することができた。そのため、カルシウムイオンの吸着反応は以下の式で表すことできる。

2Allophane-OH + Ca²⁺ \Leftrightarrow 2Allophane-OCa + 2H⁺ 図1は反応開始時の pH を横軸とし、アロフェンへのカルシ ウムの吸着量を棒グラフ、反応後の pH を折れ線グラフで表 したものである。上式より pH が高いほど吸着量が増加する と考えられ、実際に pH が高いほど吸着量が多くなる傾向が 見られた。腐植酸を含む系と含まない系で反応後の pH に差 が生じたのは腐植酸の酸中和能が働いて pH を低下させに くくしたためであり、pH11 において吸着量、反応後の pH がほぼ同じになったのはアロフェンの吸着限界に達したた めだと考えられる。

pH9 において腐植酸を含む系と含まない系で吸着量に大きな差が生じた。IR スペクトルから腐植酸もヒドロキシル 基を持つことが確認でき、このヒドロキシル基は塩基性条件下において水素イオンを解離する。そのため塩基性条件下ではアロフェン、腐植酸は負に帯電する。この時、正電荷を持つカルシウムイオンが存在すると図2のモデルのようにカルシウムイオンがアロフェンと腐植酸に挟まれる構造をとり、吸着を補助していると考えられる。このことを裏付けるために腐植酸を含む条件と含まない条件で測定したXAFS スペクトルの解析を進めている。

Adsorption structure of metal ion on soil including humic acid ITOU, Y., SHOZUGAWA, K., MATSUO, M.

図 1. 吸着量と pH の関係 (棒グラフが吸着量、折れ線グラフが 反応後の pH を表す)

図 2. 吸着モデル (上:腐植酸あり、下:腐植酸なし)

1P14 湖底堆積物における鉛 210 とセシウム 137 のフラックスについて (産業技術総合研究所 地質調査総合センター)〇金井 豊

【はじめに】湖底堆積物中における鉛-210 とセシウム-137 は、底質の堆積 速度、堆積年代を算出するために利用されるが、それぞれの起源ならびに挙動は異なってい る。即ち、前者は大気中に放出されたラドン-222 の壊変によって生じた娘核種がエアロゾル 等に付着し地表に降下して堆積物表層に堆積しており、ほぼ一定のフラックスと見なせるの に対し、後者は過去の核実験等で大気中に大量に放出されたセシウム-137 が降下して堆積す るのであるが、現在での放出量はほとんど無いため、現在でのフラックスは過去の降下物の 巻き上げによる運搬堆積とみられている。しかし、堆積物中にみられるこれらの放射性核種 の深度プロファイルは、このようなフラックスの変化とは明確に対応しておらず、堆積過程 において様々な地質学的なプロセスが考えられる。そこで本研究では、湖底堆積物のコアで 認められたこれら鉛-210 とセシウム-137 の深度プロファイルとフラックス、さらにはインベ ントリーとについて、地質学的モデルとの関係を検討したので、その結果について報告する。

【試料データ】検討に使用したデータは、これまでに演者らが測定を行ってきた諏訪湖、宍 道湖、中海などの底質の鉛-210 やセシウム-137 などの測定値である。諏訪湖は淡水湖、宍道 湖と中海は汽水湖で、一つの湖につき数カ所において底質のコアを採取している。

【結果と考察】一つの湖においても、場所によって堆積速度が異なっており、堆積環境が異 なっていることが示唆されている。しかし、鉛-210とセシウム-137について、過去からの放 射性核種の蓄積量を示すインベントリーは、同一の湖においてはほぼ比例関係が認められる。 これは大まかにみて過去から現在までの蓄積として平均化したものであるためと考えられる。 さらにそれぞれの地点での表層堆積物中における両核種のフラックス(セシウム-137のフラ ックスは濃度と平均堆積速度の積で求めた)は、現時点でのフラックスと推定されるが、概 ね比例関係が認められている(図参照)。

湖底における鉛-210のフラックスには、大気からの降下フラックス、水中において生成するフラックス、河川から供給されるフラックスなどの合計と考えられるが、水中でのフラックスは海水では大きいものの内陸湖ではそれほど大きくはなく、大気からと河川からの両者のフラックスが主体となる。セシウム-137では大気からのフラックスはかなり小さく、河川

から供給されるフラックスが大きなもの であろう。このように両者の放射性核種 のフラックス起源が異なるため、湖の表 層底質における両者のフラックスは原点 を外れる関係と想定されるが、実際には 原点に近い比例関係であることが多い。 このことは、それぞれが単独に一つの湖 内で堆積しているのではなく、両者が湖 内に入った後に混合・均質化が起こり、 堆積していることが推定され、これをモ デル計算で検証した。

表層堆積物における過剰 Pb-210 と Cs-137 のフラックスの関係

Fluxes of Pb-210 and Cs-137 in lake sediments KANAI, Y.

1P15 極低レベル放射能測定による旧ソ連地下核実験場土壌中の²⁰⁸Bi 測定の試み (愛知医大・医¹, 金沢大・LLRL², 阪大・RI センター³)

○小島貞男¹,有信哲哉¹,小須田誓¹,濱島靖典²,山本政儀²,斎藤直³

【はじめに】旧ソ連セミパラチンスク核実験場で採取した土壌試料から核分裂生成物である ¹³⁷Cs,および、中性子誘導放射性核種である ⁶⁰Co, ^{108m}Ag, ^{152,154}Eu が検出されている。また、 Bi キャリアを加えた土壌試料から溶媒抽出法、イオン交換法などの化学分離操作により精 製・単離した Bi 試料から ²⁰⁷Bi が検出されている(小島 2007)が、その生成核反応は明らかに なっていない。²⁰⁷Bi と同様に生成されていると考えられる ²⁰⁸Bi (EC 壊変、半減期: 3.68×10⁵ 年、放出γ線: 2615 keV, 100%)を測定し、²⁰⁸Bi/²⁰⁷Bi 比を得れば、その生成核反応を明ら かにできることが期待される。しかしながら、²⁰⁸Bi の放出γ線エネルギーは Th 系列の ²⁰⁸Tl の放出γ線と同じであり、通常の測定ではその検出は困難である。本研究では、金沢大 LLRL の極低レベルバックグラウンド放射能測定施設で核実験由来の ²⁰⁸Bi の測定を試みた。

【実験】1994 年 10 月にセミパラチンスク核実験場から採取された土壌試料(Bolapan-1+2, <1mm) 3.51g に Ni, Sr, Ag, Ba, Pb, Bi キャリアを各々1~3mg を添加し, 混酸 (HF+HNO₃+H₂SO₄)を加え,酸分解を行った。ろ紙によるろ過を行い,ろ液に HCl を加え, 沈殿となった Ag, Pb を除き,ろ液に NaOH 水溶液を加え,pH を約8として Bi を含む沈殿を遠心分離により,アルカリ金属元素(¹³⁷Cs など),アルカリ土類金属などから分離した。濃 HCl を加えて沈殿を溶解し,8M NaOH 水溶液を Al(OH)₃が溶解するまで加え,遠心分離を行った。Bi を含む沈殿を HCl を加え溶解し,6M HCl 性溶液とし,4-メチル-2-ペンタノンを加え,溶媒抽出を行い,Fe を除去した。水相を蒸発乾固し,HCl に溶解し,1M HCl 性として陽イオン交換カラムに通した。Bi フラクションである溶出液をプラスチック試験管に集め,蒸発乾固し,²⁰⁸Bi 測定用試料とした。また,Bi キャリアを蒸発乾固した試料をブランク試料とした。これらを金沢大 LLRL の極低レベルバックグラウンド放射能測定施設の井戸型 Ge 検出 器により γ線測定を行った。

【結果および考察】化学分離前後の²⁰⁷Biの測定値から,Biの化学 収率は44%であった。LLRLでの²⁰⁸Bi 試料(492,992 秒測定)および Blank 試料(295,361 秒測定)の測定結果を右図に示す。²⁰⁸Bi 試料で は²⁰⁷Biのピークとそのサムピークが顕著に検出され、また、²⁰⁸Bi およびバックグラウンドの²⁰⁸Tlからと考えられる 2615 keV のエ ネルギー領域では、(6.1±1.1)×10⁵ cps のピークが検出された。一 方、Blank 試料の測定では、²⁰⁸Tlからの(3.4 ± 1.1)×10⁵ cps のピー クが検出された。ここで、陽イオン交換分離の過程で¹⁵²Eu(1408.0 keV, 20.8%),¹⁵⁴Eu(1274.5 keV, 35.5%)が Bi フラクションから完全 に除去されていることから,同様の挙動をする Th も完全に除去さ れていると考えられる。したがって、²⁰⁸Bi 由来の γ 線は(2.7 ± 1.5) ×10⁵ cps とみなすことができる。現在、更なる測定を行うととも に、²⁰⁸Bi の検出効率の検討を行っており、発表当日には、²⁰⁸Bi の 定量値に基づく考察を行う予定である。

【文献】小島 他, 第51回放射化学討論会要旨集3B05, 104(2007)

Extremely low background measurement of ²⁰⁸Bi in the soil of the Semipalatinsk nuclear test site in the former USSR. KOJIMA, S., ARINOBU, T., KOSUDA, C., HAMAJIMA, Y., YAMAMOTO, M., SAITO, T.

1P16 Ba と Ra の二酸化マンガンへの共沈挙動 (金沢大院自然¹、金沢大理工²)〇日南宗一郎¹、中西 孝²

【はじめに】 水試料中のRaを定量する際のRa濃集法としてBaSO4共沈法がよく用いられる。 BaとRaが同じ2族のアルカリ土類元素であり、化学的挙動が似ているからである。しかし化 学的性質が似ているが故に、多くのBa試薬中にRaが含まれている。その結果、BaSO4共沈法 を用いてRaを定量する際には、Ba試薬のブランク値を差し引く必要がある。しかしブランク 値が水試料中のRaの量と同程度あるいはそれ以上である場合、Ra定量に支障をきたす。そこ で水試料中の微量のRaを濃集する際に、Ba試薬の量を制限して鉛試薬を補助共沈剤として併 用したりしている。しかし、Ba試薬からRaを分離除去できれば、Raの検出下限を下げること ができ、Ra濃集の際のBa試薬使用量の制限や鉛試薬の併用も不必要となる。

そこで本研究では Ba 試薬からの簡便・迅速な Ra 除去法の開発を目指して、まず二酸化マンガン共沈法による Ba と Ra の分離について検討した。

【実 験】 ①²²³Ra(半減期 11.4 d、²³¹Paから分離) トレーサー3 M 硝酸溶液(40-60 Bq/mL)1 mL、②安定Ba同位体を含む¹³³Ba(半減期 10.5 y、Ba試薬への制動放射線照射で製造) トレー サー3 M 硝酸溶液(6-7 Bq/mL, 1.3 mM Ba)1 mL、③蒸留水 1 mL、④MnCl₂水溶液(272 mM Mn)1 mLを 15 mL遠沈管にとって混合した。この混合溶液を 70 ℃のウォーターバスで 30 分間加温 後、KMnO₄水溶液(91.1mM Mn)を 2 mL加え、40 mmの振とう幅・300 rpmで 1 時間混合溶液と 生成するMnO₂を振り混ぜた。その後、遠心分離でMnO₂沈殿と上澄みを分離し、上澄みをGe 半導体検出器で測定した(¹³³Baと²²³Raのγ線を測定)。MnO₂共沈後の上澄み液中の¹³³Baと²²³Ra

の量を共沈系に添加した¹³³Baと²²³Raの量と比較 し、MnO₂へのBaとRaの共沈分配比と共沈率を評 価した。また、このMnO₂共沈系に 1,4,7,10,13,16-ヘキサオキサシクロオクタデカン(18-Crown-6、 18C6 と略)を共存させる場合についても検討した

(③蒸留水 1 mLの代わりに 18C6 の水溶液(6.49 mM 18C6)を1 mL添加した)。

【結 果】 MnO_2 共沈系に存在するBaとRaの原 子数比はおよそ $10^{13}:1$ であるにもかかわらず

(Mn: Ba は 約 350:1) Raが優先的にMnO₂に共
 沈することが分かった。また、18C6 が存在する場
 合のBaとRaそれぞれのMnO₂への共沈率は両方と
 も 18C6 が存在しない場合よりも上昇し、BaとRa
 の分離係数も向上した。

表 1	BaとBaのMnOa
衣工	DaCKavJMIIO2共化力能比

	18C6			
	なし	あり		
$D_{ m Ra}$	62	286		
D_{Ba}	27	51		

図1 BaとRaの MnO₂への共沈率

The coprecipitation behavior of Ba and Ra with manganese dioxide HINAMI, S., NAKANISHI, T.

1P17日本海、東シナ海、オホーツク海の表層海水における ²²⁸Th 濃度と ²²⁸Ra/²²⁶Ra
放射能比の水平分布

(金沢大 LLRL¹、中央水研²、むつ海洋研究所³、原子力機構⁴、西海水研⁵、東農 大⁶)〇吉田圭佑¹、井上睦夫¹、皆川昌幸²、中野佑介¹、小藤久毅³、乙坂重嘉 ⁴、清本容子⁵、塩本明弘⁶、浜島靖典¹、山本政義¹

日本海は、海水の出入り口が浅く、準閉鎖系海域である。日本海周辺諸国からの汚染物質 輸送等の観点から表層海水の水平方向の循環を解明することが強く望まれる一方、主に対馬 海流、さらにはリマン海流などが複雑に絡み合い、その循環は非常に複雑である。このよう な特徴をもつ日本海表層海水の海水循環を解明することは困難である。海水中に極微量に存 在する放射性核種は、さまざまな半減期と異なる地球化学的挙動を持つため、物質循環を探 るための強力なトレーサーとなる。しかし通常のγ線測定には多量の海水(200-1000 L)と複 雑な化学処理が必要で多大な労力を必要とする。本実験施設が最近確立した極低バックグラ ウンドγ線測定法の進歩および化学処理法の確立により、少量(20 L)の表層海水で²²⁸Th、 ²²⁸Ra および²²⁶Ra 濃度の測定が可能となった。これにより多くの地点でのサンプリングが可 能となり、より多くのデータを得ることができるようになった。

2005 年~2009 年の初夏 (6 月~8 月) に、日本海、東シナ海、オホーツク海 (計 25 地点) で 表層海水を 20 L 採取した (Fig. 1)。これら海水試料に低バックグラウンドγ線測定を適用し、 ²²⁸ Th、²²⁸ Ra、²²⁶ Ra 濃度を測定した。

²²⁸Th は ²²⁸Ra の娘核種であり、Ra 同位体が一般的に溶存性であるの に対して、Th 同位体は粒子反応性 が高く、海水中の粒子物質循環のト レーサーとなりうる。本研究の結果、 日本海南部海域 (対馬海盆、大和海 盆、本州沿岸) では、北部 (大和堆、 日本海盆、北海道沿岸) に比べ、²²⁸Th 濃度が低いという傾向がみら れた。本年会では、²²⁸Th の水平分布、 さらには ²²⁸Ra/²²⁶Ra 放射能比との比 較により、日本海とその周辺海域に おける粒子物質循環に関する議論 を行う予定である。

Fig.1 Locations of sampling sites for seawater

Lateral distributions of ²²⁸Th activity and ²²⁸Ra/²²⁶Ra activity ratio of surface water within the Sea of Japan, the East China Sea, and the Sea of Okhotsk.

Yoshida, K., Inoue, M., Minakawa, M., Nakano, Y., Kofuji, H., Otosaka, S., Kiyomoto, Y., Shiomoto, A., Hamajima, Y., Yamamoto, M.

1P18 東部太平洋における Pu-239, 240 濃度分布

(金沢大院自然¹,筑波大加速器²,金沢大理工³)○瀧本清貴¹,

隅 貴弘¹,木下哲一²,中西 孝³

【はじめに】大気圏内核実験(1945~1980年)によって人工放射性核種Pu-239,240(T_{1/2} =2.41×10⁴ y, 6.56×10³ y)が環境に放出された。Puは骨親和性元素であるため人体に 取り込まれると排泄されにくい上に, Puの長半減期同位体は α 放射体であるため高い 放射性毒があり、環境Puの量・濃度及び挙動に関する知見の蓄積は重要である。大気 圏内核実験によって放出されたフォールアウトPuの多くが海洋にもたらされたが、分 布に海域差があることが分かってきている。しかし、東部太平洋はPuデータが乏しい 海域であり、Pu濃度分布等のデータを充実させることが求められている。

【実 験】 東大海洋研 白鳳丸のKH-03-1 次研究航海(東部太平洋)において採取さ れた海水試料(10 測点)と堆積物試料(5 測点)についてPu分析を行った。海水試料(1 試 料:~250 L)は,船上で²⁴²Pu(3.75×10⁵ y)収率トレーサーと鉄(Ⅲ)担体の添加およ び鉄共沈によるPu予備濃集処理が行われた。持ち帰られた鉄共沈試料の8 mol L⁻¹塩酸 溶液からのジイソプロピルエーテルによる大部分の鉄の抽出除去,Puの水酸化物共沈 の後,水酸化物沈殿を硝酸または塩酸に溶解して亜硝酸ナトリウムでPuをIV価に調整 した。硝酸系及び塩酸系で陰イオン交換樹脂カラム法によりPuを分離・精製した。精 製されたPuをステンレス板上に電着し,Si半導体検出器を用いてα線スペクトロメト リーを行い,Pu同位体を定量した。

風乾堆積物試料は減圧乾燥して秤量し,収率トレーサー²⁴²Puを既知量添加した後, アルカリ溶融を行った。融解物を蒸留水でニッケルるつぼから出し,硫酸鉄(Ⅱ)アン モニウムを添加してPuを低酸化状態に保ちながら水酸化物沈殿へのPu共沈率を向上さ せた。水酸化物沈殿を遠心分離した後,濃塩酸に溶解し,析出したゼラチン状のケイ 酸を除去した。その後Puの鉄共沈を行い,さらに海水試料と同様の操作を行った。

【結 果】 海水柱のPu-239,240 深度分布は,表層で低く,500~800mに濃度極大があり,中層で低濃度となった後,海底付近で濃度が高くなるという他の海域と同様の特

徴を示した。また,海水柱の Pu-239,240 蓄積量は 0.8~5.1 Bq/cm² であった。一方,堆積物柱の Pu-239,240 蓄積量は 0.3~1.2 Bq/cm² であり,海水柱と堆積物柱のPu-239, 240 蓄積量比は 3.9~15.2 であった (図)。太平洋中央部(ビキニ環礁)か ら西部太平洋では海水柱と堆積物柱 のPu-239,240 蓄積量比は 0.9~3.4 と 報告されており,東部太平洋では明 らかに海水中にPu-239,240 が多く残 っていることが分かった。すなわち, 東部太平洋における海水中 Pu-239,240 の沈降は遅い。

Distribution of Pu-239,240 concentration in the eastern Pacific TAKIMOTO, K., SUMI, T., KINOSHITA, N., NAKANISHI, T.

1P19 還元的環境下における東京湾底質に含まれる元素の化学状態 (東大院総合)○原直樹、小豆川勝見、松尾基之

【はじめに】東京湾では近年水質が改善したと言われるが、青潮の発生により漁業への影響が報告される等、未解決の問題を抱えている。特に夏季には還元的環境が発達し、貧酸素水塊の発生が頻繁に見られる。また干潟は堆積物が溜まりやすく、堆積時の水質環境が底質中に保存されることから、研究対象として好例であると考えられる。そこで本研究では、東京湾の干潟底質、そして比較用として、小網代湾の干潟底質を鉛直方向に採取し分析することで、水質の還元的環境と底質中の元素の化学状態との関係を明らかにすることを目的とした。 【実験】干潟底質は多摩川河口域、及び小網代湾の干潟において、コアサンプラーで鉛直方向に採取した。採取した底質は深さ方向に3cmごとにカットし、それぞれ窒素雰囲気下で加圧ろ過を行った後、高エネルギー加速器研究機構 Photon Factory の BL-9A において、X 線吸収微細構造による状態分析を行い、堆積環境を評価した。採取時には、サンプリング地点の水質と底質の酸化還元電位(ORP)を測定し、ORP の大小と底質中の元素の化学状態との関係について考察を行った。

【結果と考察】図1に多摩川河口干潟底質の酸化還 元電位(ORP)の鉛直変化を示した。深さ20cm以上の 試料ではORP は負の値を取っており、深層の試料 ほどORP が小さくなる、即ち還元的環境になると いう顕著な傾向が見られた。また図2には多摩川河 ロ干潟底質のSのK端X線吸収端近傍構造(XANES) スペクトルを示した。図2中の(1)から(3)は、それぞ れ(1)が S²[-II](2472eV)、(2)が SO₃²[+IV](2474eV)、(3) が SO₄²[+VI](2480eV)のピークを示す。

ORP が正の試料では小さかったピーク(1)が、ORP の値が小さくなるにつれ大きくなっている。また(2) のピークに関しては、表層の試料ではピークが目視 出来ないが、深層の試料になるにつれ、徐々にピー クが見られるようになっている。更に、ORP が小さ くなるにつれ(3)のピークが小さくなり、鉛直方向で Sの状態変化が顕著に見られることが分かる。東京 湾では貧酸素水塊が発生し、干潟等において非常に 還元的な環境が作られている。還元的環境下では、 硫酸還元により S が還元されることから、このよう な S の顕著な状態変化が起こったと考えられる。こ の結果から、底質の元素の化学状態から東京湾の還 元的環境を評価できると示唆された。

本発表では、比較用として採取した入江干潟の小 網代湾干潟における底質試料についても、合わせて 報告する。また今後、貧酸素水塊下の浚渫窪地にお いてもサンプリングを行い、より還元的な環境下の 元素の化学状態についても示したいと考えている。

図1. 多摩川河口干潟底質の酸化還元電位

図 2. 多摩川河口十潟底質における S の K 端 XANES スペクトル(深度別)

Research on the chemical states of sediments in Tokyo Bay under reducing condition HARA, N., SHOZUGAWA, K., MATSUO, M.

1P20 ^{有機態ハロゲン(EOX)のカワウ(Phalacrocorax carbo)}体内における組織 器官分布

(愛媛大・農¹、イーグレツト・オフィス²) ○河野公栄¹、志岐勇馬¹、栫 拓 也¹、松田宗明¹、須藤明子²、森田昌敏¹

【はじめに】環境中で化学的に安定な有機化合物が地球規模で環境中に広く拡散分布し、さらにとトをはじめ野生生物体内に蓄積していることが明らかにされ毒性影響が懸念されている。特に代表的な残留性有機汚染物質(Persistent Organic Pollutants: POPs))について国連環境計画(UNEP)の主導のもと POPs に関する国際条約締結国を中心に国際的な環境モニタリングと 環境流出の低減化が図られている。現在、POPs としてリストアップされている多くの化合物 は有機ハロゲン化合物である。そこで本研究では、環境試料から抽出される有機ハロゲン化 合物を含む画分を中性子放射化分析に供し、有機ハロゲン化合物を有機態ハロゲン (Extractable Organic Halogens: EOX)総体として分析し、EOX 濃度レベルを明らかにすることを 試みた。人間活動に伴って陸域から流出した有機ハロゲン化合物は、水圏へ流入し、さらに 魚介類に高濃縮されることが推定される。そこで本研究では、陸水域の魚類を摂食し、体内 の POPs 濃度が比較的高い魚食性野生鳥類であるカワウを研究対象とした。

【試料と方法】 琵琶湖産カワウの死亡個体から得た代表的な組織、器官(筋肉、肝臓、脂肪、 精巣、肝臓、肺、脳、心臓)及び血液を分析に供した。EOX 抽出法は、POPs 分析に一般的に 利用されている方法に準じ、上記試料 1g程度を精秤し、アセトンおよびヘキサンによる抽 出を行い、その後に純水を用い有機溶媒中の無機ハロゲンを水洗除去した。得られた抽出液 をロータリーエバポレーターで濃縮した後、ポリエチレン容器に封入し、さらにその外部を 清浄なポリエチレン袋に入れポリシーラーで封入した。中性子照射は、日本原子力研究開発 機構 JRR-3M 原子炉、中性子束密度 4.7 x 10¹³ n/cm²・sec で 2 分間照射後、直ちに塩素、臭素、 ヨウ素の誘導核種から放出される y 線を測定した。なお y 穂計測には CANBERRA GX1519-7500SL 及び CANBERRA 556A を用いた。

【結果と考察】分析に供した全てのカワウ組織、器官試料から EOX が検出され、最低濃度が 腎臓から、最高濃度が脂肪組織から得られた。脂肪組織に次いで脳が高濃度を呈した。カワ ウ成鳥(♂)2 個体の EOX 組織、器官分布を比較したところ、脂肪組織に次いで脳が比較的高 濃度という結果が得られ同じ傾向を示した。一方、EOX を構成する EOCI, EOBr, EOI の濃度 順位は EOC1 > EOBr > EOI で地殻存在度の順位と同じであった。さらに各組織、器官につい て EOC1 と EOBr、EOC1 と EOI の濃度比関係について検討したところ、組織器官によって特 徴的な濃度比を示し、EOBr/EOC1 比は脂肪組織が脳より大きく、脂肪組織では塩素、臭素原 子を含む有機化合物が集積し易いことが考えられ、それらは脂溶性を有することが推定され た。他方、脳では EOC1 濃度が高いものの EOBr, EOI いずれも低レベルであった。脳には血 液・脳関門が存在し、POPs は一般には脳へ移行し難いことが知られているが、本研究で得ら れた結果は脳に移行しやすい有機塩素化合物の存在を示唆している。脳から検出されるこれ ら化合物は、脂肪組織から検出される化合物とは化学構造が異なり生体内で薬物代謝酵素に よって化学構造が一部変化した代謝物で血液・脳関門を通過し易い化学構造を有し、しかも 脳中の生体成分と親和し易い化学構造であることが推定される。

Distribution of Extractable Organohalogens (EOX) in Tissues and Organs of Great Cormorant (*Phalacrocorax carbo*) KAWANO, M., SHIKI, Y., KAKOI, T., MATSUDA, M., SUDO, A., MORITA, M.

1P21 亜鉛欠乏マウスのすい臓細胞中における微量元素の定量とタンパク質の変化 (静岡大院・理¹、静岡大理・放射研²)○下山弘高¹、村松航¹、山本督²、川島 美智子¹、菅沼英夫²、矢永誠人²

【緒言】

生体内にはさまざまな微量元素が存在するが、それらの多くはタンパク質と結合しており、 特に亜鉛は亜鉛酵素として非常に多くの酵素反応に関与していることが知られている。我々 は、マウスをモデル動物として、亜鉛欠乏状態における生体内微量元素の濃度変化からそれ らの相互作用について研究を行ってきた。これまでの実験結果より、亜鉛欠乏マウスの骨と すい臓中の亜鉛濃度が対照マウスに比べて大きく減少すること、また、すい臓では1週間の 亜鉛欠乏飼育で著しく亜鉛濃度が減少し、その後は、その濃度が一定に保たれていることが わかっている。このすい臓での亜鉛濃度の変化の理由は、タンパク質の変化に起因するもの と考えられる。そこで、本研究では、1週間の亜鉛欠乏マウスのすい臓に着目し、亜鉛欠乏 初期におこる亜鉛濃度の変化に関係するタンパク質の変化について調べることとした。

【実験】

ICR 系雄マウスに亜鉛欠乏餌を与える「亜鉛欠乏群」と対照餌を与える「対照群」の二群 に分けた。8 週齢から1 週間の飼育後、すい臓を摘出し4 頭分を一試料としてホモジナイズ を行った後、遠心分離法による細胞分画を行い、サイトゾル画分を分離した。このサイトゾ ル画分は多くのタンパク質を含むため、SDS-PAGE および二次元電気泳動によるタンパク質 の分離を行い、両群間での変化を調べた。さらに、ゲルろ過クロマトグラフィーを用いるこ とによりサイトゾル画分を分子サイズ別に分離した後、タンパク質濃度の定量や原子吸光分 析による亜鉛濃度の定量を行った。

【結果と考察】

SDS-PAGE および二次元電気泳動の結果より、亜鉛欠乏群と対照群の両群間におけるタン パク質のバンドやスポットには大きな変化は見られなかった。このことから、新たなタンパ ク質の発現あるいは既存のタンパク質の消失が起こっているとは考えにくい。しかし、過去 に行った機器中性子放射化分析の実験結果より両群間の亜鉛濃度には大きな差が見られてい ることから、現時点では、亜鉛含有タンパク質中の亜鉛が遊離したアポタンパク質として存 在している、もしくはタンパク質中の亜鉛が他の金属によって置換されている等の可能性を 考えている。

Determination of trace elements and transformation of proteins in pancreas of zinc-deficient mice SHIMOYAMA, H., MURAMATSU, W., YAMAMOTO, O., KAWASHIMA, M., SUGANUMA, H., YANAGA, M.

1P22 鼻腔内投与法を用いたインスリン様成長因子-I の嗅覚輸送に関する 基礎的検討 基礎的検討

(金沢大院医系¹、金沢大医研²、金沢大医³)

○長岡三樹矢¹、鷲山幸信²、高坂祐輝³、天野良平²

【緒言】 インスリン様成長因子-I (IGF-I)は 7649Da のポリペプチドで、脳梗塞や神経変性疾 患の改善に有用な物質であると考えられている。血流による脳内への高分子物質輸送は脳血 液関門(BBB)により阻害を受けやすいため、その投与法は脳実質内または脳室内への直接注入 という侵襲的な方法が取られる。本研究室では一部の重金属が嗅神経を介し、かつ BBB を迂 回して脳内へと移行することを見いだした。IGF-I もまた鼻腔内投与により BBB を迂回して 直接的に脳内へと移行する輸送経路が動物実験で確認されているものの、その輸送機序や輸 送時間は未だ明らかとなっていない。本研究ではこれらの解明に向けマウスの鼻腔または尾 静脈に比放射能の異なる放射性ヨウ素(¹²⁵I)標識 IGF-I 溶液を投与し、脳神経系への経時的な 移行について比較検討を行った。

【実験】 ICR 系 8 週齢雄性マウスに 3 種の異なる比放射能(10.1MBq/µg、101kBq/µg、 1.01kBq/µg)の¹²⁵I-IGF-I 溶液を、鼻腔内投与法では右鼻腔内に 10µl を、静脈投与法では 100µl を尾静脈から投与した(n=4,5)。投与後 5、10、30、60、180、360 分で血液と脳神経組織(嗅球、 大脳、中脳、橋・延髄、小脳、三叉神経)を摘出し、湿重量を測定してからウェル型ガンマカ ウンタで計測して各経過時間における単位重量あたりの取込率(%dose/g)を求めた。また鼻孔 周囲の皮膚および鼻腔も摘出しウェル型ガンマカウンタで計測してから取込率(%dose)を求 めた。

【結果と考察】 鼻腔内投与群では比放射能が低くなるにつれ鼻腔の取込率、そして血液および脳神経組織での単位重量あたりの取込率が上昇した。これは比放射能の低下、つまり溶液中の総 IGF-I 濃度の上昇によって鼻腔内への¹²⁵I-IGF-I の滞留性が向上し、持続的に血液および組織中へと取り込まれることによると考えられる。また、比放射能が 101kBq/µg および 1.01kBq/µg の IGF-I 溶液鼻腔内投与群では嗅球および三叉神経で投与後 60 分までの単位重量 あたりの取込率はその他の脳神経組織と血液に比べて高くなり、嗅神経または三叉神経を介した脳神経系への直接的な輸送経路が示唆された。以上より IGF-I は鼻腔内投与によって嗅 覚経路を介して脳内へ速やかに輸送できることが期待できた。

因1. 石比放射肥くの鼻腔の取込牛

図2. 鼻腔内投与60分後の各組織についての単位重量 あたりの取り込み率

Evaluation for Olfactory Transport of Intranasally Administered Insulin-like Growth Factor-I NAGAOKA, M., WASHIYAMA, K., KOSAKA, Y., AMANO, R.

1P23 抗体標識が可能な無担体 Lu-177 の製造法の開発 (原子力機構¹、群馬大学院医²)○渡辺 智¹、橋本和幸¹、渡辺茂樹¹、

飯田靖彦²、花岡宏史²、遠藤啓吾²、石岡典子¹

【はじめに】 ¹⁷⁷Lu(半減期 6.73 日)は、がん治療に適した β 線(最大エネルギー:498 keV) に加えてがんへの集積状況をモニター可能な γ 線(208 keV 及び 113 keV)を同時に放出するた め、内用放射線治療への適用が有望視されている。我々は、がんに特異的に濃集するモノクロー ナル抗体へ¹⁷⁷Lu を標識した¹⁷⁷Lu-抗体を開発し、¹⁷⁷Lu-抗体のがん治療薬としての有用性を評価す ることを目指している。そのためには、高純度で安定同位元素を含まず放射性同位元素だけの無 担体の¹⁷⁷Lu が必要である。そこで、本研究では、¹⁷⁷Lu-抗体の合成が可能な高純度で無担体の¹⁷⁷Lu の製造法の開発を目的とした。

【実験】 無担体 ¹⁷⁷Lu の製造法としては、¹⁷⁶Yb(n, γ)¹⁷⁷Yb(半減期 1.91 時間) →¹⁷⁷Lu 反応を用 い、約 2 mg の濃縮 ¹⁷⁶Yb₂O₃(濃縮度 97.6%-99.7%)を原子炉 JRR-3 で照射した。照射済みの濃縮 ¹⁷⁶Yb₂O₃を塩酸と過酸化水素水で溶解して蒸発乾固の後 0.01M HCl 溶液とした。この溶液を HPLC (逆相シリカゲルカラム: Waters Resolve C18 Radial – Pack 8 mm ϕ x300 mm) にチャージし、溶 離液として 0.25 M 2-ヒドロキシイソ酪酸 (2-HIBA) /0.1 M 1-オクタンスルホン酸ナトリウム (1-OS)を用い、流速 2 ml/min で、¹⁷⁷Lu とターゲットである Yb とを分離した。分離後の Lu フラ クションを陽イオン交換カラム(Bio Rad AG50Wx8, 8 mm ϕ ×20 mm) に通して Lu を樹脂に吸着さ せておき、0.1 M HCl を流して 2-HIBA/1-OS を完全に除去した後、6 M HCl で ¹⁷⁷Lu を溶離して最 終 ¹⁷⁷Lu 溶液とした。次に、この最終 ¹⁷⁷Lu 溶液を蒸発乾固した後 0.1M 酢酸で溶解し、酢酸緩衝液 と NuB2(悪性リンパ腫に多く発現する CD20 抗原を認識する抗体)にキレート剤である DOTA (1,4,7,10-tetraazacyclododecan- N,N,N'',N''' -tetraacetic acid)を結合させた化合物を 加えて 40℃で反応させて ¹⁷⁷Lu-DOTA-NuB2 の合成を試みた。標識率(標識率%=合成した ¹⁷⁷Lu-DOTA-NuB2 の放射能量/標識実験に用いた ¹⁷⁷Lu の放射能量×100)は、薄層クロマトグラフィ ーにより求めた。

【結果及び考察】上記方法により製造した¹⁷⁷Luを用いて、抗体への標識を試みた結果、標識率は 5%以下と悪いことが判明した。ICP-MS による不純物元素の定量を行い、この原因を調査した結 果、2-HIBA/1-0S 試薬中の不純物元素(Ca, Fe, Zn)が原因で¹⁷⁷Lu-DOTA-NuB2の標識阻害が起こ っていることが分かった。そこで、これらの不純物元素の混入を可能な限り抑制するために、 2-HIBA については陽イオン交換カラム(Bio Rad AG50Wx8, 15 mm ϕ ×113 mm)、1-0S については キレート交換カラム(Bio Rad Chelex-100, 15 mm ϕ ×113 mm)を用いて精製し、各不純物元素の 最終¹⁷⁷Lu 溶液中の含有量を 80%程度まで減少(Ca: 87→18 ppb、Fe: 340→83 ppb、Zn: 77→10 ppb) させた。さらに、上述の精製過程の陽イオン交換操作の後に、陰イオン交換操作(Bio Rad AG1x8, 8mm ϕ ×20mm)を追加して更なる不純物除去対策を施すことにより、最終的な Ca、Fe 及び Zn 濃度 を、それぞれ 13, 18, 9 ppb まで減少させた。以上の結果、本改良法により分離・精製した¹⁷⁷Lu の製 造が可能となった。

Production of Lu-177 capable of labeling antibodies WATANABE Sa, HASHIMOTO K, WATANABE Sh, IIDA Y, HANAOKA H, ENDO K, ISHIOKA N

1P24 PZC ¹⁸⁸W - ¹⁸⁸Re ジェネレータの開発と ¹⁸⁶Re 及び ¹⁸⁸Re-DMSA の合成 (東大アイソトープ総合セ¹、原子力機構²、明治大学研究・知財戦略機構³) 〇野川憲夫¹、橋本和幸²、栗原雄一³、小池裕也¹、森川尚威¹、井尻憲一¹

【はじめに】がん治療に適したエネルギーの β 線及び核医学イメージングに適した γ 線を同時に放出する優れた特性を持つレニウム-186 (β 線 max 1.08 MeV)及びレニウム-188 (β 線 max 2.12 MeV) について、我々は①高比放射能¹⁸⁸Re の製造技術の開発、②放射性レニウム標識化合物の実用的調製法の開発、を行っている。①については、タングステンの吸着容量がアルミナの数十倍以上もあるジルコニウム系無機高分子 PZC (Poly Zirconium Compound)を用いた新規の小型¹⁸⁸W-¹⁸⁸Re ジェネレータの実用化を目指す。②については、がんの診断・治療のための放射性薬剤として注目される¹⁸⁶Re 及び¹⁸⁸Re-ジメルカプトコハク酸 (DMSA)の^{99m}Tc 放射性薬剤と同様に随時使用可能となるような簡便な操作法による合成法の開発を目指す。

【実験】①トレーサー量の¹⁸⁸W を用いて、¹⁸⁸W の PZC への最適吸着条件(pH、反応温度、反応 時間等)及び¹⁸⁸Re 溶出挙動について調べた。PZC は(株)化研製で製造時期と粒径の異なる 製品を実験に用いた。¹⁸⁸W は原子力機構製でその化学形は WO₄²⁻である。吸着実験は、反応温 度 90℃一定とし、0~180 分間約 30 分間隔で反応溶液の一部採取し、PZC への¹⁸⁸W の吸着率と 溶液の pH を測定した。吸着率は、採取液を約 10 日後¹⁸⁸W の子孫核種である¹⁸⁸Re(半減期 17 時間)を γ カウンタ((株)パーキンエルマー、コブラ(クワンタム 5003))で測定し、加 熱前の放射能に対する割合で求めた。②¹⁸⁶Re 及び¹⁸⁸Re-DMSA の合成には、還元剤として塩化 第一スズを用いた。まず、塩化第一スズが溶解するアルカリ溶液(pH14)で標識化を行い、

標識物の放射化学的収率及び分子量を 求めるための TLC 及びゲルクロマトグ ラフィーの分析条件について検討した。 【結果と考察】①¹⁸⁸Wの PZC への吸着率 の時間変化を Fig. 1 に示す。その結果、 製造時期及び粒径に依らず 90℃で 180 分間加熱すると吸着率は 90%以上を示 した。pH は反応開始前 7 前後から反応 終了後 6~4 に低下した。PZC をガラス カラムに充填し生理食塩水で ¹⁸⁸Re を溶 出させた結果、¹⁸⁸Re に対する不純物とし

て溶出する¹⁸⁸Wの割合は1~3×10⁻⁴で、その内微粉状は0.2~0.7×10⁻⁴であった。②アルカリ溶 液中で合成した¹⁸⁶Re 及び¹⁸⁸Re-DMSAの放射化学的収率は、反応液を酸性後 TLC 分析により求 められ、その分子量を推定するにはゲル"Sephadex G-10"を用いればよいことがわかった。 結果の詳細については、ポスターで発表する。

本研究は、文部科学省原子力基礎基盤戦略研究イニシアティブにより実施された「先進的なが ん診断・治療を実現する RI-DDS 開発研究」の成果である。

Study of the ¹⁸⁸W - ¹⁸⁸Re generator using PZC and synthesis of ¹⁸⁶ Re and ¹⁸⁸Re-DMSA NOGAWA, N., HASHIMOTO, K., KURIHARA, Y., KOIKE, Y., MORIKAWA, N., IJIRI, K.¹

1P25 加速器を用いたアルファ放射体²³⁰Uの製造および分離精製に関する基礎的検討 (金沢大医薬保健¹、阪大院理²、金沢大院自然科学³、金沢大理工⁴) 〇鷲山幸信¹、高橋成人²、荒木幹生³、横山明彦⁴、篠原厚²、天野良平¹

【はじめに】アルファ粒子は、生体組織中で短飛程且つ高 LET という特徴を持つことから核 医学領域において癌治療への応用が期待されている。これまでに²²³RaCl₂を用いた転移性骨 腫瘍の治療や²¹³Bi,²¹¹At 標識モノクローナル抗体などがヒト臨床試験に応用されている。し かし臨床試験を推進するために十分な量のこれらのアルファ放射体を確保することは難しく、 これがアルファ放射体の核医学利用進展の妨げの要因となっている。この状況を打開するた めに加速器によってアルファ放射体を製造する試みが世界的に行われている。日本では臨床 応用が可能な量のアルファ放射体を貯蔵している研究施設は皆無に等しく、現実的な供給体 制を考慮すると、加速器で製造可能なアルファ放射体の確保が今後重要となってくる。この 動きの中で近年、²³²Thの陽子誘起核反応により生成する²³⁰Pa (T₁₂ = 17.4 day)を出発物質とし て、そのβ⁻壊変で生成する²³⁰U (T_{1/2}=20.8 day)を用いることが注目されている。²³⁰U はα壊変 の後に取り扱いやすい半減期の²²⁶Th (T_{1/2}=31 min)になる(Fig. 1)ため、ジェネレーターとして の利用ができる。さらに²²⁶Thはその後²¹⁰Pb(T_{1/2}=22.3 y)に至るまで4回α壊変を行い(Fig. 1)、 いずれも半減期が1分以下であるため、全体で27.7 MeVのエネルギーを標的組織に対して照 射が可能である。したがって²³⁰U-²²⁶Th ジェネレーターの開発や、或いは²³⁰U そのものを薬 物標識した in vivo generator は、これからのa線を用いた内用放射療法では有用なものになり うる。そこで本研究では加速器を用いた²³⁰Pa および²³⁰Uの国内における製造の可能性および 標的からの分離精製に関する基礎的検討を行った。

【実験】酸化トリウム(ThO₂) 80mg を加圧成型し、直径 7 mmΦのペレットとした。この標的 に対して、大阪大学核物理研究センター K-70 AVF サイクロトロンから得られる陽子ビーム を K コースに導入して、陽子照射を行った。陽子の加速エネルギーは文献を基に 26 MeV と し電流値は約 1 µA とした。照射後、金沢大学アイソトープ理工系研究施設に移動し、4 週間 放置して短寿命核分裂核種の減衰および、²³⁰Pa の減衰により生成する²³⁰U の成長を待った。 ²³⁰Pa の生成はγ線スペクトロメトリーで確認した。その後、ThO₂を硝酸で溶解し、塩酸系に したのち、陰イオン交換樹脂カラム法を用いて²³⁰U を分離精製した。²³⁰U の確認はα線スペ クトロメトリーで行った。 さらに²³⁰U を陰イオン交換樹脂に着点し、ジェネレーターを作成 した。ジェネレーターに 8M HCl を流し、²²⁶Th の溶離を行った。

【結果】ThO₂の陽子核反応で²³⁰Pa が生成することを確認した。また放射化学分離を行うことで、²³⁰Uの生成を確認した。さらにジェネレーターを作成して²³⁰Uから成長する²²⁶Th および²¹⁰Pb に至るまでの壊変に伴う α 線の放出を確認した。討論会では、これらの技術的詳細および、²²⁶Th を用いた標識化合物の安定性や娘核種の標的内保持の評価について報告する。

Fig. 1. Decay chain of 260 U

Preliminary evaluation for production & radiochemical separation of an α -emitting radionuclide, ²³⁰U WASHIYAMA, K., TAKAHASHI, N., ARAKI, M., YOKOYAMA, A., SHINOHARA, A., AMANO, R.

1P26広島大学病院 18 MV 医療用電子リニアック室内における中性子束の箔放射化法及
びコンセントビスの放射化量による評価

(徳大HBS¹、徳大RIセ²、広大病院診療支援部³、高エネ研⁴、清水建設原子力⁵)○ 阪間稔¹、佐瀬卓也¹、大野吉美³、中村一⁴、豊田晃弘⁴、飯島和彦⁴、小迫和明⁵, 大石晃嗣⁵、桝本和義⁴

【緒言】今日, 医療用小型加速器施設内で生成する中性子束の評価法に関するガイドライン の構築や、加速器施設内での放射化状況に関するクリアランス制度の検討について, 放射線 安全管理の立場から議論が行われている。これまで本研究グループでは、医療用小型加速器 施設内で生成する熱及び熱外中性子ならびに速中性子束を、金箔を主とした多種類の金属箔 による放射化検出器を用いた定量分析(箔放射化法)を適用し、小規模放射線発生装置使用 施設での中性子束測定法の標準化を目指した基礎データの解析・蓄積を行ってきた¹⁾。今回, 新たな調査対象となる 18MV外部放射線治療用電子リニアック装置(医療用として最高エネ ルギーに属する小規模放射線発生装置)での中性子束測定結果と、施設内に設置されている コンセントビスや本体部品等の放射化状況について報告を行う。

【実験】今回、調査した 18MV 外部放射線治療用電子リニアック装置は、広島大学病院第 1 リニアック室のバリアン社製 CLINAC 2300C/D である。リニアック室内中心に位置する電子 リニアック本体との位置関係を考慮しながら、金箔の箔放射化法では 2 枚の箔 (各厚さ 0.1 mm)をカドミウム板 (厚さ 1.0 mm)で覆われているものと覆われていないものを一組(ポ リエチレン袋などには梱包せず)とし、治療台下やガントリー本体、側壁、迷路等、計 10 ヶ 所に設置した。また、速中性子測定用としてインジウム箔とアルミニウム箔についても計 3 ヶ所に設置した。金属箔の照射時間は、平日一日の外部放射線治療の照射時間〔2008 年 11 月7日(金)〕に合わせて行った。その照射終了後、放射化した金箔を HPGe 検出器による γ 線スペクトロメトリーから照射終了時の生成放射能を求め、熱及び熱外中性子束,速中性子 束を定量評価した。さらに、リニアック室内の比較的容易に採取できるコンセントビス(Ni メッキの真鍮材 Cu: Zn ≒ 6:3.5、過去約 13 年間の 18MV 照射〕から放射化量を調べ,金箔 での熱中性子束の結果と比較検討した.また、本装置は解体及び更新時期にあり、本調査時 において解体現場に立ち入ることができた。そこで本体の部品等を回収し、イメージングプ レート(富士フィルム社製 BAS-MS)による放射化状況の可視化も行った。

【結果】コンセントビスに含有する亜鉛の⁶⁴Zn(n, γ)⁶⁵Znで生成される⁶⁵Zn (T_{1/2}= 244.26 d)の 放射能量から熱中性子束を評価したところ、第1リニアック室内(迷路部を除く。)において、 3.3×10⁴~9.9×10⁴ cm⁻² s⁻¹の範囲で分布していることが確認できた。その分布傾向は、ガント リーヘッドの回転軸に垂直な平面に位置する側壁(回転軸から 3.4m離れた所)の熱中性子束 が高く、その垂直面から遠ざかるに従って低くかった。一方、迷路部での熱中性子束の値は 検出下限(<約5×10³ cm⁻² s⁻¹)であり、遮蔽壁の効果が確かめられた。金箔による熱中性子 束の評価結果については、コンセントビスと同様な傾向であった。さらにガントリーヘッド の回転角度変動に伴う固定照射から、直接のX線(18MV)照射に伴う¹⁹⁷Au(γ ,n)¹⁹⁶Au反応で 生成する¹⁹⁶Au (T_{1/2}=6.183 d)の放射能を回転軸に垂直な平面上の側壁及び天井で確認した。 1) 阪間稔他、日本放射線安全管理学会誌 第7巻2号 138-147 (2008).

Estimation of neutron fluxes at the 18 MV medical electron liniac room in Hiroshima University Hospital by an activation foil method and activation activities of the screws of wall sockets. SAKAMA, M., SAZE, T., OHNO, Y., NAKAMURA, H., TOYODA, A., IIJIMA, K., KOSAKO, K., OISHI, K., MASUMOTO, K.

1P27 水溶性放射性同位体内包フラーレンの合成 (筑波大院¹、首大院²、原子力機構³)〇末木啓介¹、長崎芳紀¹、上司智義¹、 秋山和彦²、塚田和明³、浅井雅人³、豊嶋厚史³、永目諭一郎³

【はじめに】 水溶性のフラーレン化合物は生物科学および医学分野での応用に興味が持た れる物質である。金属原子を内包したフラーレン類については内包元素を放射性同位体にす ることにより新たな機能が与えられる可能性がある。一般的な金属フラーレンは C_{82} などのフ ラーレンに内包されていることが多く、内包元素を中性子放射化することで放射性同位体を 導入することが可能である。しかし、生体内での挙動などへの応用は C_{60} を中心にした化合物 が多く用いられている事もありその応用には C_{60} に放射性同位体を内包させることによって 応用は更に広がると考えられる。フラーレン類と酸化物などの化合物とを混合して、加速器 で特定の放射性同位体を合成すると同時に反跳エネルギーを利用して、フラーレン類に打ち 込む方法で放射性同位体内包フラーレンの合成の試みが大槻らによって多くの報告されてい る¹⁾。本研究では(p,n)反応で合成した ⁷⁵Se、¹²⁴Sb、¹²⁶I を C_{60} および C_{70} に導入を試み、取扱が 便利な ⁷⁵Se@C₆₀を用いて水酸基をフラーレン骨格に導入する条件を既存の La@C₈₂ および Sm@C₈₂などと比較した²⁰。

【実験】 粉末の C_{60} および C_{70} と酸化物を Al フォイルに包んだ直径 8 mm の円盤状に固め た照射試料を原科研タンデム加速器で陽子 13 MeV, 1 μ A にて 2 時間の照射を行った。冷却 後、照射試料は CS_2 で溶解した後に 0.2 μ m のフィルターを用いてろ過し、溶媒を *o*-ジクロ ロベンゼンに置き換えた。5PBB 固定相を用いた HPLC 展開を行った。更に、RI@C₆₀ と考えら れる分画試料を Buckyprep 固定相にクロロベンゼンで展開して溶離挙動を調べた。不純物の 除去をした ⁷⁵Se@C₆₀ のトルエン溶液 2.5 ml に対して、飽和 KOH 水溶液 1 ml と TBAH10%溶 液 3 滴を加えて激しく振とうさせて化学反応を起こさせ、水溶性分子の反応時間などの合成 条件を検討した。¹⁴⁰La@C₈₂、¹⁵³Sm@C₈₂ などの既存金属内包フラーレンを中性子放射化で標 識した分子からの合成条件との比較を行った。

【結果】 加速器で生成した放射能量とHPLC展開して得られたRI@C₆₀、RI@C₇₀の放射能量 から⁷⁵Se および¹²⁴Sb については約1-2X10⁴の割合でC₆₀、C₇₀ に取り込ませることが可能で あることが明らかになった。5PBB固定相へのHPLC挙動は既報の結果と非常に一致した¹⁾。しか し、¹²⁶Iに関しては溶離挙動が異なっていることが示された。⁷⁵Se@C₆₀を用いた水酸基の誘導 体の生成については反応時間が短いとSephadex G25に吸着される成分が存在し、安定な生成物を 得るためには1時間以上の反応時間が必要である事が明らかになった。反応時間による各相への放 射能の分布は¹⁵³Sm@C₈₂の結果²⁾と良く一致している。

- 1) T. Ohtsuki et al., Phys. Rev. B, 60, 1531 (1999) and T. Ohtsuki et al., Phys. Rev. B 65, 073402 (2002).
- 2) K. Sueki and Y. Iwai, J. Radianal. Nucl. Chem. 272 (2007) 505-509.

Synthesis of water-soluble encapsulated-radioisotope fullerenes SUEKI, K., NAGASAKI, Y., KAMITSUKASA, T., AKIYAMA, K., TSUKADA, K., ASAI, M., TOYOSHIMA, A., NAGAME, Y.

1P28

ピレニル固定相を用いたランタノイド金属フラーレンの HPLC 溶離挙動に関する研究

(首都大院・理工¹、筑波大・院数理物質²)○秋山和彦¹、古川英典¹ 齋藤陽博¹、濱野達行¹、末木啓介²、片田元己¹

【はじめに】近年、フラーレンは機能性物質の材料として様々な分野で用いられるようになってきている。このフラーレンに金属原子を内包している金属フラーレンはその特異な分子構造と電子状態から興味深い物質の一つでありながら、生成量が代表的なフラーレンである C₆₀に比べ 1/1000 以下と非常に少ないため、十分な研究が進展しているとは言えない状態にある。このような少量の物質の性質を調べる上で、試料から放出される放射線を検出手段とするラジオクロマトグラフィーは非常に強力な手法であると言える。本研究ではラジオクロマトグラフィーを用いてピレニル固定相における La~Gd までのランタノイド元素を内包した金属フラーレン M@C₈₂の溶離挙動から、それぞれの M@C₈₂の持つ双極子モーメントを解析的に求めたので報告する。

【実験】金属内包フラーレンを含むススは5種類のランタノイド(La、Ce、Pr、Nd、Gd) を混合した炭素棒を電極とし、He 雰囲気、圧力 500 Torr、DC50 A の条件でアーク放電を行 い合成した。このススから 1,2,4-トリクロロベンゼンによって抽出したフラーレン成分を日 本原子力研究開発機構(JAEA)のJRR-3M HR-1 孔(flux: 9.6×10¹³ n/cm²·sec)及び PN-1

(flux: 5.2×10¹³ n/cm²·sec) においてそれぞれ 6 時間及び 20 分間熱中性子照射を行った。この放射化試料を Pyrenyl 固定相の Buckyprep カラムへ流速 3.2 mL/min でトルエン展開した。 溶出成分を 20 秒ごとに分画し、各分画より放出されるγ線を高純度 Ge 半導体検出器にて測定し、各 M@C₈₂成分の保持時間を調べた。

【結果及び考察】図はBuckyprep 展開における $M@C_{82}$ の HPLC 溶離挙動を示している。 $M@C_{82}$ の保持時間はそれぞれ La: 60.2、Ce: 60.9、Pr: 61.0、Nd: 61.0、Gd: 62.2 であった。HPLC の保持時間は固定相と溶質分子とのある種の平衡反応

と見なすことができ、保持時間と自由エネルギーとの 間には相関があると言える。Buckyprep カラムにおける Pyrenyl 固定相と極性を持った金属フラーレンとの相 互作用の大きさは分散相互作用と双極子-誘起双極子 相互作用の和として表すことができる。¹ 各パラメー タは既に報告されている実験値等を参考にし、定数 C は実験的に得られた La@C₈₂の双極子モーメント 4.4 D から求め、Ce, Pr, Nd, Gd の M@C₈₂の双極子モーメント をそれぞれ 5.1 D、5.4 D、4.5 D、6.3 D と決定した。 Reference:

図. M@C₈₂の HPLC 溶離挙動

1. M@C₈₂の保持時間 t_Rと Pyrenyl 固定相との相互作用の関係は以下のように表すことができる。

$$\ln\left(\frac{t_{R}-t_{0}}{t_{0}}\right) = C + \frac{1}{RT} \left(\left(\frac{3}{2} \frac{I_{1}I_{2}}{I_{1}+I_{2}}\right) \frac{\alpha_{1}\alpha_{2}}{r^{6}} + \frac{1}{4\pi\varepsilon_{0}} \frac{\alpha_{1}\mu_{2}^{2} + \alpha_{2}\mu_{1}^{2}}{r^{6}} \right)$$

ここで、*I*はイオン化ポテンシャルをαは分極率、*r*は M@C₈₂の重心と固定相の平均ファンデルワールス距離を示 している。各パラメータにおける添え字は 1:固定相、2: M@C₈₂のものであることを示す。

Study on HPLC Elution Behavior of Lanthanide Metallofullerenes Using Pyrenyl Stationary Phase. AKIYAMA, K., FURUKAWA, H., SAITO, A. HAMANO, T. SUEKI, K. KATADA, M.

1P29

HDEHP を用いた三価アクチニドの溶媒抽出挙動

(阪大院理、阪大RIC²、東北大多元物質科学研³)○高山玲央奈¹、大江一弘¹、 小森有希子¹、藤沢弘幸¹、栗山亜依¹、菊谷有希¹、菊永英寿¹、吉村崇¹、 高橋成人¹、斎藤直²、三頭聰明³、篠原厚¹

【緒言】

本研究では溶媒抽出法を用いてアクチニドの化学的性質を系統的に調べることを目的としている。その手始めとして di(2-ethylhexyl)phosphoric acid(HDEHP)を抽出剤として用い、Am, Cm, Cf の分配比の硝酸濃度依存性と HDEHP 濃度依存性を調べたところ、Cm が Am, Cf と異なる挙動を示した。また、比較対照としてランタニドの分配比の硝酸濃度依存性と HDEHP 濃度 依存性も同時に取得した。

【実験】

²⁴¹Am, ²⁴³Cm, ²⁴⁹Cf, ¹³⁹Ce, ¹⁵²Euを硝酸 6 mLに溶解し、HDEHPを含んだベンゼン 6 mLと混合し 10 分間振とうした。1 分間遠心分離後、両相 4 mLずつ分取し γ 線スペクトロメトリーを行い、 分配比(D)を求めた。また、希土類標準溶液 (Pmを除く)を用いてランタノイドの分配比を以 下の操作で調べた。120 μ L希土類標準溶液(10 ppm)をドライアップし、硝酸 6 mLに溶解し、 HDEHP-ベンゼン 6 mLと混合し 10 分間振とうした。1 分間遠心分離後、両相 4 mLずつ分取し た。有機相は 13 mol/L濃硝酸で逆抽出した。各相 4 mLをドライアップして 5%硝酸に溶解し た。両相の希土類濃度をICP-MSで測定し、分配比を求めた。

【結果と考察】

図1にAm, Cm, Cfの硝酸濃度変化に よる分配比を示す。Am と Cf では直 線関係が得られたのに対し Cm の分 配比は硝酸濃度 0.03 mol/L 以下、も しくは 0.3 mol/L 以上でほぼ一定の値 を示した。

Am, Cf はランタニドと似た、傾きが -3程度の直線を得た。

Cm の挙動を詳しく調べるため硝酸 濃度 0.01 mol/L, 0.1 mol/L, 0.5 mol/L での HDEHP 濃度依存性を調べたと ころ、硝酸濃度 0.01 mol/L, 0.5 mol/L では Cm が Am, Cf と挙動が異なり、 硝酸濃度 0.1 mol/L では Am, Cf と似 たような挙動を示した。このような Cm の挙動に対する考察は発表時に 報告する。

図1 Am, Cm, Cf の分配比の硝酸濃度依存性 [HDEHP] = 0.5 mol/L

Extraction behavior of trivalent actinides with HDEHP

TAKAYAMA, R., OOE, K., KOMORI, Y., FUJISAWA, H., KURIYAMA, A., KIKUTANI, Y., KIKUNAGA, H., YOSHIMURA, T., TAKAHASHI, N., SAITO, T., MITSUGASHIRA, T., SHINOHARA, A.

1P30 2-ヒドロキシイソ酪酸イオンをもつウラン(VI)錯体の合成と構造 (阪大院理)〇吉村崇, 菊永英寿, 篠原厚

【はじめに】 我々は、2-ヒドロキシイソ酪酸イオン(HIB) を錯形成剤に用いてランタノ イドとアクチノイドの分離挙動と分離の際の化学種との関係を研究している。本研究では、 HIB⁻が配位したウラニル錯体を新たに合成し、X線結晶構造解析により、その構造を特定した。

【実験】 酢酸ウラニル 50 mg (0.12 mmol)と過剰量の 2-ヒドロキシイソ酪酸 150 mg (1.45 mmol)を 3 mL の水に混合し、室温で数日間放置したところ、黄色の単結晶が得られた。こ の結晶について、X線および赤外吸収スペクトル測定を行った。

【結果と考察】 図1にウラン周囲の配位構造を示す。ウランは7配位で五角両錐形構造を とっている。ウランのアキシャル位には、2つのオキソが配位し、O=U=Oは178.3(2)°とほぼ 直線になっていた。エカトリアル位には、HIB⁻の5つの酸素原子が配位している。HIB⁻は2 つのウラニルをカルボキシル基で架橋しヒドロキシ基は非配位のものと、一つのウラニルに カルボキシル基とヒドロキシ基でキレートし、さらにカルボキシル基の一つの酸素原子が隣 接するウラニルに架橋したものの2種類が存在している。アキシャル位の酸素原子とのU-O 結合距離は、1.762(6)および1.783(5) Åで一般的なU=O2重結合とほぼ同様であった。また、 エカトリアル位の酸素原子との結合距離は2.336(5) - 2.444(5) Åで、U-O単結合の距離である が、ウランとヒドロキシ基の酸素原子との結合距離は2.444(5) Å と長いことから、HIB⁻のヒ ドロキシ基は脱プロトン化せずに配位していることが示唆される。図2にこの錯体のネット ワーク構造を示す。上記のように2つのHIB⁻がウラニルを架橋することにより、2次元ハニ カム形構造をとっている。

赤外吸収スペクトルは、1614 および 1561 cm⁻¹にカルボキシル基に由来する伸縮振動が観 測された。これは、架橋および架橋キレート配位した2種類のHIB⁻によるものと考えられる。

図1. 錯体の構造

図2. 錯体のネットワーク構造

本発表は、特別会計に関する法律(エネルギー対策特別会計)に基づく文部科学省からの 受託事業として、国立大学法人大阪大学が実施した平成20年度「再処理システムに向けた 核分裂生成物の高効率分離・分析法の開発」の成果です。

Synthesis and Structure of Uranyl(VI) Complex Containing 2-Hydroxyisobutyrate YOSHIMURA, T., KIKUNAGA, H., SHINOHARA, A.
1P31 Cation-exchange behavior of Zr, Hf, and Th in H₂SO₄/HNO₃ mixed solutions-towards to study on sulfate complexation of 104Rf (Advanced Science Research Center, Japan Atomic Energy Agency ¹) O Z. J. LI ¹, A. TOYOSHIMA ¹, K. TSUKADA ¹, M. ASAI ¹, T. K. SATO ¹, T. KIKUCHI ¹,

N. SATO¹, Y. NAGAME¹

[Introduction] We have so far studied the chloride, nitrate, and fluoride complexations of Rf. It was found that Rf behaves like the group-4 elements Zr and Hf in HCl and HNO₃, but not like the pseudo-homologue Th, confirming that Rf is one member of the group-4 elements. The adsorption strength on the anion-exchanger indicated that the affinity of the Cl⁻ ion to the group-4 elements decreases as Rf > Zr > Hf. On the other hand, it was found that ion-exchange behavior of Rf is significantly different from that of Zr and Hf in HF and in HF/HNO₃ mixed solutions, and that the fluoride complexation of Rf is remarkably weaker than that of Zr and Hf. The sulfate ion SO₄²⁻ is a strong complexing agent for the group-4 elements. The stabilities of Zr and Hf complexes formed with the various inorganic ligands decrease in the order of $F > SO_4^{2-} >> Cl \ge NO_3^-$. Therefore, it is of great interest to investigate the properties of Rf sulfate complexes by comparing them with those of Zr and Hf sulfate complexes. In this work, cation-exchange behavior of Zr, Hf, and Th in the H₂SO₄/HNO₃ mixed solutions at [H⁺] = 1.0 M and [SO₄²⁻] = 4.1 × 10⁻⁴ M has been studied by a batch method using the carrier-free radiotracers ⁸⁸Zr, ¹⁷⁵Hf, and ²³⁴Th. On-line chromatographic behavior of Zr and Hf has also been studied by a rapid chemical separation apparatus (1.6 mm i.d. × 7.0 mm micro-column) to examine reaction kinetics and then to find out appropriate conditions for the study of Rf.

(Results and discussion**)** Figure 1 shows the variation of the distribution coefficients (K_d s) of Zr, Hf, and Th on the cation-exchanger as a function of [HSO₄⁻] in the H₂SO₄/HNO₃ mixed solutions at [H⁺] = 1.0 M. It can be seen that the adsorption sequence on the resin is Th >> Hf > Zr, confirming that Zr has a stronger ability to form sulfate complexes than Hf and Th. The K_d values of these elements gradually decrease with [HSO₄⁻], reflecting successive formation of sulfate complexes. Further analysis of the slopes at each [HSO₄⁻] shows that M(SO₄)²⁺ and M(SO₄)₂ (M = Zr, Hf, and Th) are the dominant aqueous species in 0.04–0.2 M [HSO₄⁻]. The K_d values of Zr and Hf measured from the

on-line chromatograms are also drawn in Fig. 1 by the respective closed symbols. It can be seen that the K_d values of Hf obtained in the batch and on-line experiments are in good agreement, indicating the achievement of chemical equilibrium. While, the K_d values of Zr from the on-line experiments are smaller than those from the batch ones, indicating that the reaction kinetics of Zr is somewhat slow. At $[SO_4^{2-}] = 4.1 \times 10^{-4} \text{ M},$ the log K_d values linearly decreased with an increase of $\log [H^+]$, attributed to the displacement of these metal ions from the resin by H^+ .

Fig. 1. The variation of the K_{ds} of Zr, Hf, and Th on the cation-exchanger as a function of $[HSO_4^-]$ in H_2SO_4/HNO_3 mixed solutions at $[H^+] = 1.0$ M.

Cation-exchange behavior of Zr, Hf, and Th in $\rm H_2SO_4/HNO_3$ mixed solutions – towards to study on sulfate complexation of $_{104}Rf$

Z. J. LI, A.TOYOSHIMA, K. TSUKADA, M. ASAI, T. K. SATO, T. KIKUCHI, N. SATO, Y. NAGAME

1P32 Rf を模擬した同族元素 Zr ならびに Hf の α-HiB 錯形成 (茨城大院理工¹, 原子力機構先端研², 理研仁科セ³, 中国近代物理研⁴) 〇菊池貴宏^{1,2}, 豊嶋厚史², 李子杰², 塚田和明², 浅井雅人², 佐藤哲也², 佐藤 望², 永目諭一郎², 笠松良崇³, Fan Fangli⁴

【はじめに】原子番号 104 以上の超アクチノイド元素(あるいは超重元素)についての化学的 性質は、その短い半減期と核反応生成率の低さ故に化学実験が困難で、未だ不明な部分が多 い。さらに、この領域では相対論的効果により、その元素の周期性から逸脱した性質が現れ ると予想されている。原子力機構超重元素核化学研究グループによる最近の研究では、周期 表第4族に位置する 104 番元素ラザホージウム(Rf)のフッ化物形成が同族元素 Zr ならびに Hf の性質とは大きく異なることを実験で確認している。本研究では、この第4族元素をさら に系統的に理解するため、金属イオンの電荷やイオン半径に依存した錯形成をするα-ヒドロ キシイソ酪酸(α-HiB)を用いて、陽イオン交換法により Zr ならびに Hf のα-HiB 錯体形成を調 べた。また今後の原子力機構タンデム加速器施設を利用した Rf のオンライン実験への検討を 行った。

【実験】調整した陽イオン交換樹脂 MCI GEL CK08Y 10 – 200 mg, 放射性トレーサー(⁸⁸Zr, ¹⁷⁵Hf)を溶解した 0.1 – 2.6 M HNO₃ 水溶液 50 μ L,及び α -HiB/HNO₃ 混合水溶液 2950 μ L を遠 沈管内で混合し、25°Cで振とうした。目的時間まで振とう後、試料を遠心分離し、上澄みを 分取して γ 線測定により分配係数 K_d 値を得た。Zr ならびに Hf の α -HiB 錯形成の平衡到達時 間を振とう時間を変化させて調べた。また K_d 値と[H⁺]ならびに[α -HiB⁻]の関係も求めた。

【結果】Zrならびに Hf の α -HiB との錯形成の平衡到達時間はおよそ 180 分であり、また K_d 値の変化から Zr, Hf はほぼ同様の挙動を示すことがわかった。下図はこの平衡時における

 K_d 値を水溶液中の[α -HiB]の変化 に対してプロットしたものであ る。[α -HiB]の増加に伴って,Zr ならびにHfの K_d 値が減少してい ることから,陽イオン錯体の逐次 形成反応が起きていると考えら れる。さらに、平衡時における K_d 値の変化を混合水溶液中の水 素イオン濃度の変化について調 べることで、溶存錯体の化学種を 推定した。発表では、溶存化学種 やオンライン実験への適用性も 含めて議論する。

α-HiB complexation of Zr and Hf as homologues of Rf. KIKUCHI, T., TOYOSHIMA, A., LI, J., TSUKADA, K., ASAI, M., SATO, T., SATO, N., NAGAME, Y., KASAMATSU, Y., FAN, F. L.

1P33 使用済核燃料の分析に向けた液体シンチレーション検出器の基礎開発 (阪大院理)○菊永英寿,吉村崇,篠原厚

【はじめに】 我々は核燃料再処理システム向けに,核分裂生成物の中でも分離が困難なラ ンタニドおよびアクチニドを対象にキャピラリー電気泳動法を用いて迅速に分離・分析する 手法を開発してきている。本研究ではキャピラリー電気泳動装置と液体シンチレーション検 出器を接続し,オンラインで使用済核燃料を分析できる一連の装置の開発を目指して, α/β 粒子弁別能を持った液体シンチレーション検出器を作成し,基礎データを取得したので報告す る。

【実験】 今回作成した液体シンチレーション検出器は光電子増倍管に浜松ホトニクス株式 会社製のR331-05,ディレイライン増幅器にORTEC製460,入力波高分析器にORTEC製552, 時間差波高変換器にORTEC製567を用いた。ADCは岩通計測製のA3100を用いて,エネル ギー情報と蛍光寿命情報を同時に記録した。

まず、パイレックスガラス管(10 mm $\phi \times 75$ mm)に α 線放出核種として²⁴¹Am、 β 線放出核種として¹⁵²Eu を含んだ 0.0128 M PBBO/1.57 M naphthalene/0.18 M HDEHP - toluene 溶液 (HDEHP 抽出シンチレータ) 1 mL を封入した試料を用いて α/β 粒子弁別能のテストを行った。 次に、 α 線放出核種として²²⁶Ra とその娘核種を含んだ HDEHP 抽出シンチレータ溶液を同様 に測定し、エネルギー分解能の評価を行った。

オンライン化の前段階として、U 字型のガラスセルを作成し、連続送液した状態で液体シ ンチレーション測定することを試みた。シンチレータはキャピラリー電気泳動後の試料を測 定することを考慮して乳化シンチレータ(Ultima Gold AB, PerkinElmer 社製)を用いた。2 台 の液体シンチレーション検出器を 20 cm のテフロンチューブで連結し、²⁴¹Am および¹⁵²Eu を 含んだ乳化シンチレータを 700 µL/min で 30 秒流し、続いて放射能を含まない乳化シンチレ ータを同じ流速で流しながら、各検出器の計数をリストモードで記録した。

【結果と考察】 ²⁴¹Am-¹⁵²Eu 試料を測定したと きのエネルギー情報と蛍光寿命情報の 2 次元ス ペクトルを Fig. 1 に示す。α線由来の計数とそ れ以外が明確に分かれており,計数効率は99.6% であった。また, ²²⁶Ra 線源を用いて測定した分 解能は, FWHM = 192 keV (4784 keV), 395 keV (7687 keV)であった。

連続送液した状態の液体シンチレーション測 定では各検出器間の距離に相当した時間差で ²⁴¹Am,¹⁵²Euの放射線が検出された。しかし,送液中 のテーリングが強く起こっており低粘性のシンチ レータを用いる等の改良が必要と考えられる。

2 次元スペクトル

本発表は、特別会計に関する法律(エネルギー対策特別会計)に基づく文部科学省からの 受託事業として、国立大学法人大阪大学が実施した平成20年度「再処理システムに向けた 核分裂生成物の高効率分離・分析法の開発」の成果です。

Development of liquid scintillation detector for analysis of spent nuclear fuel KIKUNAGA, H., YOSHIMURA, T., SHINOHARA, A.

1P34

プロトン捕獲による Pm-146 の生成率

(¹筑波大加速器,²金沢大理,³金沢大自然,⁴金沢大理工,⁵大阪大院理) 〇木下哲一¹, 森田祐一郎², 荒木幹生³, 横山明彦⁴, 高橋成人⁵

【緒言】

現在の宇宙を構成する元素の中で Fe 近傍核よりも軽い元素は星の中で作られ、それよりも 重い元素は超新星爆発の高温・高密度の中で中性子の多重捕獲と β -壊変を主体とした核反応 により生成される。しかしながら、現在の地球上に約 30 核種の中性子不足核 (p 核) が存在 し、生成に関しては中性子の捕獲反応では説明不可能で、中性子の放出もしくは陽子の捕獲 により生成する。近年元素合成に関して、特に生成率については熱核反応が考慮され、温度 を仮定しプランクの黒体放射のエネルギー分布をした光子との光分解と、マクスウエル分布 のエネルギースペクトルをしたプロトンや中性子の捕獲反応が考えられている。p 核の生成 には光分解では閾値付近の(γ ,n)反応、プロトンの捕獲では数 MeV のクーロンバリア以下の低 エネルギーの(p,γ)や(p,n)反応が支配的である。Sm-146 も p 核のひとつで、Sm-146 の生成には Sm-147 の光分解と Nd+p 反応から始まるプロトンの捕獲が考えられる。本研究では ¹⁴⁶Nd(p,n)¹⁴⁶Pm 反応の経路に着目し、核反応断面積の測定を行った。

【実験】

濃縮度 97.1%の¹⁴⁶Nd 濃縮同位体を純度 99.999%の Al ホイルに電着し、¹⁴⁶Nd ターゲットを 調製した。複数枚の¹⁴⁶Nd ターゲットを重ね合わせて、阪大 RCNP の AVF サイクロトロンよ り得られるプロトンビームの照射を行った。照射後にガンマ線スペクトロメトリーを行い ¹⁴⁶Pm の放射能を定量し、核反応断面積を計算した。また、それぞれのターゲットに入射した エネルギーは OSCAR コードを用いて計算した。

【結果と考察】

Fig. 1 に¹⁴⁶Nd(p,n)¹⁴⁶Pm 反応の励起関数を 示す。また、比較として NON-SMOKER と ALICE コードによる計算値も示す。いずれ の計算コードにも、実験値と約 1 桁の隔た りが見られる。元素合成温度下の¹⁴⁶Nd(p,n) 反応からの¹⁴⁶Pm の生成率は、マクスウエル 分布のプロトンエネルギースペクトルと核 反応断面積の積で示す事ができる。実験で 得られた¹⁴⁶Nd(p,n)¹⁴⁶Pm 核反応断面積を NON-SMOKER 計算を基に低エネルギー側 に外挿することで温度と生成率の関係を得 ることができた。また、NON-SMOKER に よる他の核反応の計算を用いて、プロトン 捕獲による Sm-146 の元素合成の経路につ いて考察した。

Fig. 1. Excitation function for ¹⁴⁰Nd(p,n)¹⁴⁰Pm reaction.

Production rate of Pm-146 via proton capture reaction KINOSHITA, N., MORITA, Y., ARAKI, M., YOKOYAMA, A., TAKAHASHI, N.

1P35 Tb-159 変形核に対する 0-16 重イオン核融合反応の励起関数

(金沢大院自然¹、阪大院理²、金沢大理工³)○貝谷 英樹¹,荒井 美和子¹, 浅野 敦史¹,西川 恵¹,大江 一弘²,菊永 英寿²,高橋 成人²,横山 明彦³

【序論】重イオン核融合反応では、近年標的核にアクチノイド等の変形核がよく用いられるよう になった。この場合、球形核と比べて反応の入口チャネルでのクーロン障壁が異なるため、生成 確率の変化が予想される。本研究では、アクチノイドと同様に比較的変形が大きく、核分裂が起 こりにくいために反応断面積の測定が容易なランタノイド元素に着目し、Tb(¹⁵⁹Tb:100%)をタ ーゲットとした¹⁶Oとの核融合反応実験を行った。Tb原子核では、回転楕円体近似の回転軸方向の 長さをa、回転軸に垂直な方向の長さをbとすると、電気四重極モーメント(+1.432)から求めた 変形度a/bの値は1.07である。一方、¹⁶Oは球形核であり、この反応系のextra push energyは小さい ので、ターゲットの変形に敏感な実験系である。この反応系で反応生成物の放射能を測定し、そ こから断面積を導出し理論的な励起関数との比較を行った。

【実験】大阪大学核物理研究センターにて、スタック法及びガスジェット法による照射実験を行った。前者は、長寿命生成物の測定を目的とし、後者は、輸送効率の補正が必要だが短寿命生成物の測定が可能である。ターゲット(1.9~2.4 mg/cm²厚)はテルビウム酸化物をAl箔(スタック法)またはTi箔(ガスジェット法)に分子電着して調製した。スタック法では、ターゲットを3 枚重ね合わせてスタックとし、¹⁶Oイオンを照射した。照射後、各ターゲットに分けてポリエチレンシートに封入し、Ge半導体検出器を用いて、得られた放射性反応生成物のγ線測定を行った。 ガスジェット法では、同じ重イオンをターゲットに照射し、反跳して飛び出した反応生成物を、 ガスジェットを用いて実験室に搬送しフィルターで捕集した後、同様にGe半導体検出器を用いて ィ線測定を行った。両方の測定において定量した放射能から、反応断面積を求めた。

【結果と考察】γ線測定の結果、スタック 法では¹⁷²Ta、^{168,170,171}Hf、^{167,169}Lu、ガスジ ェット法では¹⁶⁸⁻¹⁷⁰Ta、¹⁶⁸Hfが検出された。 実験から得られた励起関数の一部を計算 コードALICEによる球形を想定した理論 値とともに図に示した。検出された^{168,170}Hf、 ¹⁶⁹Luのほとんどは、先行核であるTaの流れ 込みによると考えられるため、この実験値 をTaの理論値と比較した。比較において、 変形核の効果が期待される反応断面積の 絶対値(入口チャネル)、各生成物の断面積 (出口チャネル)、融合反応のしきい値につ

いて注目した。絶対値については、全体的に

1.00E+03 Ta-169 Ta+170 1.00E+02 台 <u>Ta-</u>168 • Hf-170(Ta-170) ሰ 反応断面積 △ Lu-169(Ta-169) □ Hf-168(Ta-168) 1.00E+01 • Ta-170 ■ Ta-168 1.00E+00 70 110 130 150 170 90 入射エネルギー (MeV) 図 ¹⁵⁹Tb(¹⁶O,xn)^{175-x}Ta反応の励起関数。白丸はスタック法、黒丸

理論値より小さかった。各生成物の断面積については、データにばらつきがあるが、¹⁷⁰Taについては、ピークの位置は理論値とほぼ一致した。¹⁶⁹Taでは、立ち上がりは理論値とほぼ一致した。 理論値とのずれについては、変形核の影響を含めてどのようなパラメーターが影響しているか検討する必要がある。

Excitation Function for Fusion Reaction of the O-16 Projectile with a Deformed Nucleus of Tb-159 KAIYA, H., ARAI, M., ASANO, A., NISHIKAWA, M., OOE, K., KIKUNAGA, H., TAKAHASHI, N., YOKOYAMA, A.

1P36

ゾル・ゲル法による Co と Fe イオンドープ酸化スズの磁気特性
 (東大院工¹、東理大²) 野村貴美¹、○岡村久美子²、山田康洋²

【はじめに】 磁性のない TiO₂ や SnO₂ に遷移金属イ オンを微量ドープした半導体は室温強磁性を示すこ とが報告され、スピントロニクス材料として注目され ている。本研究では、2 種類の異なる濃度の磁性イオ ン (Fe³⁺,Co²⁺)をドープした SnO₂半導体の粉末を作 製し、磁気特性を調べた。

【実験方法】 $Sn_{1-x-y}Co_xFe_yO_2$ 粉末試料を、ゾル・ゲル 法を用いて作製した。 Cl^- , NO_3^- , $7x \rightarrow cotors cotors$

【結果】 XRD を測定した結果、全試料がルチル構造 を示し、(110)のピーク位置から Co の増加 で高角へ、Fe の増加と共に低角側に移動し た。Co ドープにより格子が小さく、Fe ドー プにより大きくなることを示す。さらに、結 晶の格子定数比 (c/a) は、SnO₂ に Fe、Co のドープ量とともに減少して、1%で高い異 方性があることが確認された(図1)。また、 VSM による磁気モーメントの測定結果も同 様に Fe: Co=1:1 の 1%ドープ量のとき 0.212µB /(Co,Fe)と最大値を示した(図 2)。ま た、このとき保持力が最も小さかった。Co 濃度が 0.5%のときに保持力が大きかった。 MSの測定からは、Co濃度の増加と共に磁気 分裂ピークの強度が減少していることが示 された。Coのドープにより結晶内のFeの磁 気的相互作用が減少したためと考えられる。 常磁性ピークは2種類観測され、四極子分裂 OS が大きい常磁性ピークは、酸素欠陥近傍 の Fe³⁺とよると考えられる。Co一定で Feの 変化による磁気特性の変化は当日示す。

Magnetic properties of Co and Fe codoped SnO₂ powders prepared by sol-gel method. NOMURA, K., OKAMURA,K., YAMADA,Y.

1P37 イミダゾール含有配位子-Fe(II) 錯体の示す2段階スピンクロスオーバー挙 動:メスバウアー分光法による研究

(産総研¹、熊本大院・自然²、岡山大・理³)○飯島誠一郎¹、平田芳樹¹、矢吹 聡一¹、佐藤鉄也²、西 晃史朗²、松本尚英²、川本亮平³、藤田邦洋³、丸山 久志³、小島正明³

【はじめに】 イミダゾール基を含む多座配位子 の Fe(II)錯体は、多様なスピンクロスオーバー (SCO)挙動を示すことが知られている。今回は、 右図の錯体[Fe(H₂L^{2-Me})₂]Cl·X に見られる一段階 および二段階の SCO 転移、また類似の配位子 から構成される 2 核錯体[Fe₂(H₂L')₃](ClO₄)₄ に おける LS(低スピン) -HS(高スピン)→HS-HS 転移について報告する。

【結果と考察】 錯体[Fe(H₂L^{2-Me})₂]Cl·ClO₄の⁵⁷Fe メスバウアースペクトルを図 1 に示した。 78 K 以下の低温では LS-Fe^{II} (δ = 0.53 mm/s, ΔE_Q = 0.24 mm/s)が支配的であるが、温度の上昇に つれて HS-Fe^{II} 成分が増加し、298 K では HS-Fe^{II} 成分のみ(δ = 0.94 mm/s, ΔE_Q = 1.47 mm/s)とな ることが分かる。ピーク面積比から求めた HS のモル分率は図 2a のとおりであり、比較的広 い温度範囲で 1/2(LS-Fe^{II} + HS-Fe^{II})の状態をとる 2 段階の SCO 転移となった。一方、対陰イオ ンを置き換えた[Fe(H₂L^{2-Me})₂]Cl·PF₆·0.8EtOH は、一段階のシャープな SCO 転移を示した(図 2b)。X⁻ = ClO₄⁻, PF₆⁻のいずれも NH····Cl⁻水素結合に基づく類似の二次元構造をとるが、イオ ンの大きさが層間の相互作用に影響を与えているものと推測される。また、前者では、SCO

転移に伴って、空間群も変 化するのに対し、後者では 空間群の変化は起きないと いう差異も見出されている ¹⁾。 二核 錯体 [Fe₂(H₂L')₃] (ClO₄)₄は、4.2 K-200 Kの広 い温度範囲で LS-Fe^{II} + HS-Fe^{II} で表される中間的な スピン状態をとり、昇温に よって、 $HS-Fe^{II} + HS-Fe^{II} \sim$ シャープな転移を示した。 メスバウアースペクトルの 線幅およびAEo 値の温度変 化から、二つの Fe サイトは 非等価であることが示唆さ れた。

1) 西、荒田、松本、他、第 59 回 錯体化学討論会、1Ba-07 (2009).

Mössbauer study of two-step spin-crossover in Fe(II) complexes of imidazole-containing ligands IIJIMA, S., HIRATA, Y., YABUKI, S., SATO, T., NISHI, K., MATSUMOTO, N., KAWAMOTO, R., FUJITA, K., MARUYAMA, H., KOJIMA, M.

1P38 集積型鉄錯体の混晶化とスピン状態(II) (広島大院・理¹、広島大・N-BARD²)〇土手 遥¹、井上克也¹、中島 覚²

【はじめに】架橋配位子としてビス(4-ピリジル)型配位子を用いた集積型錯体は、多彩な 構造をとることが可能である。特に、架橋配位子として1,3-bis(4-pyridyl)propane (bpp)、アニ オンとして NCX(X = S, Se, BH₃)を用いた鉄錯体は珍しい二次元相互貫入構造となり、その中 で Fe(NCBH₃)₂(bpp)₂ ではスピンクロスオーバー挙動を示す。この錯体にベンゼン分子を包接 させることが可能で、この場合、一次元鎖状構造となる。このベンゼン包接体ではどの NCX(X = S, Se, BH₃)の場合でもスピンクロスオーバー挙動を示さない。現在、これらの集積型錯体の 鉄原子の一部を亜鉛やコバルトで置換してスピン状態を制御できないか検討している。その 結果、NCSe をアニオンとして用いた二次元相互貫入構造では、混晶にした効果が見られた。 本研究では、一次元鎖状構造となるベンゼン包接体での混晶の効果を明らかにすることを目 的とした。

【結果と考察】合成は、鉄とコバルトがそれぞれ 1:1 となるように秤量して拡散法で行った。 ベンゼン分子を包接させるかどうかは、溶媒にベンゼンを用いるかどうかで制御した。同定 は粉末 X 線回折、単結晶 X 線構造解析により行った。

Fe(Co)(NCS)₂(bpp)₂•2(benzene)の単結晶X線構造解析より、その構造は Fe(NCS)₂(bpp)₂•2(benzene)と同型であることが分かった。

ベンゼン包接体の混晶の 78K でのメスバウア ースペクトルを図1に示す。すべて、異性体シフ ト値は1.1 mm/s 程度であり、二価高スピンであ ることを示す。アニオンの違いは、四極分裂値の 違いに反映された。これを室温で測定しても二価 高スピンのままであった。これらのメスバウアー パラメータは、相当する鉄錯体のパラメータとほ ぼ同じであり、混晶とした効果は認められなかっ た。

相当する鉄錯体のベンゼン包接体は、ベンゼン 分子が脱離することにより、骨格構造が一次元鎖 状構造から二次元相互貫入構造へ変わることが 分かっている。今回の混晶についても、放置する ことによりベンゼンが脱離し、骨格構造が変化す るかどうかを検討した。室温で半年間放置した

図1 78K でのメスバウアースペクトル

Fe(Co)(NCS)₂(bpp)₂•2(benzene)は、メスバウアースペクトルの変化より、ベンゼン脱離による 構造変化が示唆された。一方、相当する NCSe 錯体と NCBH₃ 錯体では、半年間冷凍庫に保管 していたためメスバウアースペクトルの変化は認められず、ベンゼン分子は包接されたまま であると判断された。現在、室温で放置することによりベンゼン分子が脱離するかどうか、 そして骨格構造が変化するかどうかを検討している。

Syntheses of Mixed Crystals of Assembled Iron Complexes and Their Spin States (II) DOTE, H., INOUE, K., NAKASHIMA, S.

1P39 キレート配位子を持つウラニル(VI)の合成と結晶構造 (東邦大学理学部)〇北澤 孝史、 川崎 武志

ウランは +3~+6 の酸化状態をとり、 U^{3+} 、 U^{4+} 、 UO_2^{+} 、 UO_2^{2+} と、酸化数によりイオンの構造 が変化する。その中でも、 UO_2^{2+} が最も安定で、配位構造は、6 配位では八面体型、7 配位では五 方両錐型、8 配位では六方両錐型が一般的である。

ウラン(VI)に窒素が配位した錯体の結晶構造の報告例は少数である。例えば、Alcock 等が報告 した [UO₂(acac)₂py] がある。この錯体は、ウランのアキシアル位にウラニルの酸素が配位し、エ クアトリアル平面に 2 つのアセチルアセトナトの酸素がキレート配位し、1 つのピリジンが配位 した五方両錐型 7 配位である。しかしながら、最近、[UO₂(acac)₂py] の py の部分をピリジン誘 導体に置き換えた錯体 [UO₂(acac)₂4-Mepy], [UO₂(acac)₂2,4-dmpy] や、py の部分を架橋配位子に置 き換えた錯体 [{UO₂(acac)₂}2(4,4'-bpy)] や、窒素が1 つ配位しているウランのサイトと酸素のみが 配位しているウランのサイトが共存する錯体 [{UO₂(acac)₂(4-tmp)}{UO₂(acac)₂(H₂O)}]・CH₃OH と いった、数多くの窒素が配位したウラニル(VI)錯体が報告された。

[UO₂(acac)₂(4-Etpy)]錯体は py 錯体や 4-Mepy 錯体と同様の構造をしており、U(VI) 周りのア キシアル位にウラニルの 2 つの酸素が配位し、エクアトリアル平面に、acac の 4 つの酸素原子と 4-Etpy のピリジンが配位した五方両錐型 7 配位錯体であった。空間群は *P-1* であり、 [UO₂(acac)₂(4-Mepy)] とは同じであるが、[UO₂(acac)₂py] の *Fdd2* とはパッキングの様式が大きく 異なっていた。これは、ピリジン環のγ位にあるメチル基やエチル基の影響で、[UO₂(acac)₂py] よ りも、[UO₂(acac)₂(4-Mepy)] や [UO₂(acac)₂(4-Etpy)] の分子表面積が大きくなった為と考えられる。 本研究で構造を明らかにした 4-Etpy, nic 錯体の基本構造は、既知の py, 4-Mepy, 2, 4-dmpy と同様 で、U(VI) のアキシアル位にウラニルの酸素が配位して直線的な UO₂²⁺ 骨格を作り、U(VI) のエ クアトリアル平面に 2 つの acac がキレート配位してピリジン環が 1 つ配位した五方両錐型 7 配 位錯体であった。また、いずれの錯体でも、U-N 距離の方がエクアトリアル平面の U-O 距離よ りも長い。これは、第一に、窒素原子は酸素原子よりも共有結合半径が長い事が原因であると考 えられる。第二に、硬さの違いによるものと考えられ、ウランは窒素よりも硬い塩基である酸素 とより相性がいいと考えられる。また、U-O_{acac} 距離や、U=O 距離に大きな差は見られなかった。

ピリジン環が配位した錯体について、いずれも acac の酸素とピリジン環の窒素が作るエクア トリアル平面は高い平面性を持ち、U(VI) もこの平面上にほぼ存在する。ピリジン環の 4-位に側 鎖が付いた配位子を持つ 4-Etpy 錯体の py twist は、同じくピリジン環の 4-位に側鎖が付いた配 位子を持つ 4,4'-bpy, 4-Mepy 錯体や、側鎖の無い py 錯体と同程度であった。しかし、3-位にか なり嵩高い側鎖を持つ nic 錯体の py twist は、py 錯体等よりも大きく、2-位に側鎖を持つ 2,4-dmpy 錯体の py twist は、更に大きい。 以上の事から、[UO₂(acac)₂] フラグメントに 2,2'-bpy や terpy 等のピリジン環のα位に嵩高い側鎖を持つ配位子は配位できないと考えられ、U(VI) に窒 素が 2 つ以上配位した錯体の合成に acac を U に配位させるのは比較的難しいのではないかと 考えられる。

Preparations and crystal structures for uranyl(VI) coordination compounds with chelate ligands Kitazawa, T., Kawasaki, T

1P40 植物の養分吸収におけるRIリアルタイムイメージング装置の開発 (東大院農生科)〇中西友子、山脇正人、菅野里美、石橋**弘規、**田野井慶太朗

【はじめに】 作物の養分吸収は農業現場における植物生育に大きな影響を与え るにも関わらず、植物がいつどのように養分を吸収するかはほとんど判っていない。植物の 養分吸収動態が可視化されかつ解析することができれば植物生理学のみならず、現場におけ る作物生産に大きな影響を与えることができると予想される。メージングについてはその技 術開発が近年目覚しく、イオン、化合物のみならず、細胞器官の動きなども目で見えるよう になってきた。しかし、生物研究で用いられるイメージングのほとんどが蛍光色素や蛍光プ ローブなどを用いているため、定量的な解析を行うことは非常に困難である。放射線を用い るリアルタイムイメージングは、中性子線をはじめとする量子ビームの利用ならびにPET (Positron Emission Tomography)などが行われているものの、いずれも大型設備を必要とするた め手近なRI実験室で行うことができない。そこで、私達は市販のβ線放出核種(³²P、³⁵ S、⁴⁵Sなど)を用いる、RIリアルタイムイメージング装置を開発したので報告する。 【実験方法・結果】 本研究では根から吸収された養分が地上部へどう運ばれるかを可視化す る、植物個体全体をイメージングするRIマクロイメージング装置、ならびに、蛍光顕微鏡 で放射線像も同時に取得できるRIミクロイメージング装置を開発しているが、今回はマク ロ装置について報告する。市販のβ線放出核種を水耕液に添加して根から吸収させ、植物か ら放出されるβ線を、シンチレータを蒸着させたファイバー・オプティック・プレート(F OS)により光に変換させた。その微弱光をGaAsPイメージ・インテンシファイアーを通し、 高感度CCDカメラ(浜松ホトニクス、AQUACOSMOS/VIM)で画像化した。シンチレータ の種類を検討した結果、プラスティックシンチレータや CaF よりも CsI(TI)の係数効率が高く、 特に β 線エネルギーが低い¹⁴Cの場合には、CsI(TI)はCaFよりも検出感度が3倍ほど高かっ た。またシンチレータの厚さは、¹⁴Cでは役 25 μm、⁴⁵C a の場合には約 100 μm で良好な 画像を得ることができた。分解能は約100μm、検出限界は³² P で 0.5 Bq/mm² であるが、検出 感度はイメージングプレート(IP)よりも 10 倍以上高くなった。45Ca を根から吸収させた ダイズの葉について画像を取得すると、本システムで1分間積算して得られた画像は IP に 15 分間コンタクトさせて得られた画像に匹敵することが示された。ダイズの根に³²P標識リン 酸 37Bq/30ml)を吸収させたところ、まず、若い組織に優先的にリン酸が移行し、各節ならび に葉脈の分岐点でリン酸が一時的に蓄積されることが判った。さらに、ダイズの初葉ならび に本葉においてリン酸は葉脈に沿って移行したものの、葉によっては葉脈間にスポット的に 多量に蓄積する場合も示された。まだダイズのサヤにおいては、まずサヤの下部にリン酸が 蓄積し、サヤ中の種子には、サヤと接続した反対側から蓄積されていくことが示された。画 像解析結果から、サヤ中の各種子にはほぼ同量のリン酸が同時期に移行することも判った。 また、イネを用いた¹⁴C標識グルタミン吸収においては、溶液中から根に吸収されるグルタ ミン、ならびに根中のグルタミン動態も合わせて解析ができることが示された。

【おわりに】開発された本システムにより、リアルタイムで植物が³²P ならびに³⁵S で標識 された化合物やイオンがどのように根に吸収されまた地上部に以降するかを実際の動画とし て見ることが可能となった。また画像解析により、養分吸収過程の定量的な検討が可能とな った。最後に、ダイズに吸収されたリンの化学系を調べたところ、短時間で吸収されたリン については無機リンの形態で移行していることが示されたことを付け加えたい。

Development of real-time RI imaging system for plant nutrient uptake. NAKANISHI, T.M., YAMAWAKI, M., KANNNO, S., ISHIBASHI, H., TANOI, K.