研究発表要旨

9月11日(木)

1A01~1A17 A 会場 1B01~1B13 B 会場

134 MeV および 184 MeV 単色中性子による Cu、Nb 標的の核反応

(阪大院理¹、京大炉²、KEK³、JAEA⁴、理研⁵、Purdue Univ.⁶、Univ. California⁷)
 O二宮和彦¹、藤原一哉¹、安井良輔¹、尾本隆志¹、高橋成人¹、笠松良崇¹、
 篠原厚¹、関本俊²、八島浩²、松村宏³、萩原雅之³、岩元洋介⁴、佐藤大樹⁴、
 柴田誠一⁵、M.W.Caffee⁶、西泉邦彦⁷

【緒言】 高エネルギーの荷電粒子は、物質に入射すると大量の中性子を二次的に生成する。 これら中性子による核反応は、高エネルギー荷電粒子が存在する環境、すなわち宇宙空間に おける星間物質内や、大型の粒子加速器施設の構造物に対して、安定同位体の比率の変化や 放射性核種の生成を起こす。中性子による核反応は、十数 MeV 以下の領域では多くの研究が されているが、より高エネルギーの領域、特に 100 MeV を超えるエネルギーを持つ中性子に よる研究はほとんど進んでいない。本研究グループは、中性子のエネルギースペクトルが、 中性子を発生させる一次ビームである陽子の入射方向に対して大きく変化することを利用し て、擬似的に単色の中性子成分を取り出す方法により[1]、高エネルギー中性子による核反応 断面積の測定を行ってきた[2]。本発表では、Cu および Nb を標的として 134 および 184 MeV 中性子による核反応断面積の測定を行ったので報告する。

【実験】中性子照射実験は、大阪大学核物理研究センターN0ビームラインにおいて行った。 200 MeV および 140 MeV の陽子を Li ターゲットへと照射し、陽子の入射方向に対して 0°と 25°に^{nat}Cu および ⁹³Nb の金属板を設置した。これらの試料に生成した短寿命の放射性核種を ゲルマニウム半導体検出器で定量し、二つの試料間での生成量を減算することによって、中 心エネルギー134 MeV および 184 MeV の中性子による核反応断面積を決定した。

【結果】図1に一例として、^{nat}Cu(x, y)⁵⁶Mn 反応の励起関数を示す。今回の測定結果は、我々の過去の研究により得られたより高エネルギー領域の核反応断面積の値と[3]、Kim らによる

低エネルギー領域の結果[4]をつなぐ値が得られた。 また陽子との核反応断面積と比較すると、低エネル ギー側では中性子による核反応の断面積の値が大 きく、入射エネルギーの増加に従い差が小さくなる という結果が得られた。本研究により Cu および Nb の両方について、20 を超える核種の生成断面積 が得られており、これらの詳細は講演で発表する。 【参考文献】

[1] J. M. Sisterson et al., NIM B240 (2005) 617

[2] K. Ninomiya et. al., Proc. Radiochim. Acta., 1 (2011) 123

[3] K. Ninomiya et. al., APSORC-13 (2013), 25-NCP-04

[4] E. J. Kim et al., Nucl. Sci. Technol. 36 (1999) 29

[5] S. J. Mills et al., Appl. Radiat. Isot. 43 (1992) 1019,

図1:陽子照射および中性子照射に よる^{nat}Cu(x, y)⁵⁶Mn 反応の励起関数

L. R. Greenwood et al., U.S. Dept.of Energy, Fusion Energy Series 0046 18 (1984) 11

Neutron-induced nuclear reactions for Cu and Nb target at 134 and 184 MeV NINOMIYA, K., FUJIHARA, K., YASUI, R., OMOTO, T., TAKAHASHI, N., KASAMATSU, Y., SHINOHARA, A., SEKIMITO, S., YASHIMA, H., MATSUMURA, H., HAGIWARA, M., IWAMOTO, Y., SATOH, D., SHIBATA, S., CAFFEE, M. W., NISHIIZUMU, K.

ACT GARIS を用いたホットフュージョン反応²⁴⁸Cm+⁴⁸Ca→²⁹⁶Lv^{*} に関する研究

(理研仁科セ¹、山大院理工²、埼大院理工³、東理大院理工⁴、新大院自⁵、山大 理⁶、IMP⁷、GSI⁸、九大理⁹、原子力機構¹⁰) ○加治大哉¹、森本幸司¹、羽場宏 光¹、若林泰生¹、武山美麗^{1,2}、山木さやか^{1,3}、田中謙伍^{1,4}、長谷部裕雄¹、 M. Huang¹、金谷淳平¹、村上昌史^{1,5}、米田晃¹、吉田敦¹、山口貴之³、門叶冬 樹^{1,6}、吉田友美^{1,6}、Z.Gan⁷、L. Ma⁷、H. Geissel⁸、S. Hofmann⁸、Y. Maurer⁸、藤 田訓裕^{1,9}、成清義博^{1,9}、田中泰貴^{1,9}、山本翔也^{1,9}、浅井雅人¹⁰、鹿取健二¹、 森田浩介^{1,9}

はじめに

ホットフュージョン反応²⁴⁸Cm+⁴⁸Ca→²⁹⁶Lv^{*}によって生成する核反応生成物を気体充填型反 跳分離装置 GARIS によって探索した。本研究は、これまでに取り組んできたコールドフュー ジョン反応による重元素合成から、次段階として初のホットフュージョン反応による重元素 合成に取り組んだ。

<u>実験</u>

実験は,理研重イオン線形加速器施設で行った。主要な実験条件を以下に示す。 Target: 290 µg/cm^{2 248}Cm₂O₃ on 2 µm Ti backing Projectile: 249.6 MeV@標的中心⁴⁸Ca¹¹⁺ Intensity: I = 0.92 pµA Total dose: 4.3×10^{18} Magnetic rigidity: 2.17 Tm Filled gas: pure He at P = 73 Pa

図1 励起関数。先行研究 [1-3]との比較。

\blacksquare : 4n, \blacktriangle : 3n_o

結果と考察

Cold fusion 反応による Z=113 探索実験時の trigger rate =2~3 cps (0.5 pµA⁷⁰Zn beam)と比較し て 75cps (0.9 pµA⁴⁸Ca beam)と高レートであったが、10 日にわたるビーム照射の結果として、 先行研究 (Dubna-Livermore 共同研究グループ[1,2]と GSI SHIP 共同研究グループ[3])によって 報告されているものとほぼ同様な崩壊連鎖を5事象観測した。3 事象は先行研究で4nとして、 2 事象は 3n として同定されているものであった。GARIS の通過効率を 36%と仮定すると、生 成断面積は σ = 3.2⁺²⁹-1.8 pb for 4n, σ = 2.1^{+2.8}-1.4 pb for 3n となる。報告されている励起関数と比 較すると良く一致しており(図 1)、得られた崩壊連鎖は同一起源であると考えられる。しかし ながら、我々はα相関のない自発核分裂を3 事象その他に観測している。入射エネルギーを一 点でしか測定しなかったため、我々自身の結果だけで核種の同定はできない。今後、励起関 数測定により、我々自身の結果から核種同定を試み、先行研究の検証を引き続き行う予定で ある。

本報告では、GARIS のホットフュージョン反応に対する性能(収集効率やバックグラウンド)評価を含め、得られた崩壊特性について議論をする。

<u>参考文献</u>

[1] Yu. Ts. Oganessian et al., Phys. Rev. C70, 064609 (2004).

[2] Yu. Ts. Oganessian et al., JINR preprint, E7-2004-160, p.1 (2004).

[3] S. Hofmann et al., Eur. Phys. J. A48, 62 (2012).

Study on hot fusion reaction of ${}^{248}\text{Cm} + {}^{48}\text{Ca} \rightarrow {}^{296}\text{Lv}^*$ using GARIS

KAJI, D., MORIMOTO, K., HABA, H., WAKABAYASHI, Y., TAKEYAMA, M., YAMAKI, S., TANAKA, K., HASEBE, H., HUANG, M., KANAYA, J., MURAKAMI, M., YONEDA, A., YOSHIDA, A., YAMGUCHI, T., TOKANAI, F., YOSHIDA, T., GAN, Z., Ma, L., GEISSEL, H., HOFMANN, S., MAURER, Y., FUJITA, K., NARIKIYO, Y., TANAKA, T., YAMAMOTO, S., ASAI, M., KATORI, K., MORITA, K.

1A03 ^{nat}Zr(d,x), ^{nat}Hf(d,x)反応による Nb, Ta 同位体の励起関数測定

(新潟大院自然¹、理研仁科セ²、新潟大理³)○村上昌史^{1,2}、羽場宏光²、 黄明輝²、後藤真一¹、工藤久昭³

【緒言】超重元素の化学研究では、その軽い同族元素の放射性トレーサーを用いた基礎実験を 行い、目的とする超重元素の化学実験に適した条件を予め調査する。105 番元素ドブニウム (Db)の化学研究においては、半減期が比較的長い^{95g}Nb (*T*_{1/2} = 35 d)と¹⁷⁹Ta (*T*_{1/2} = 1.82 y)が有用 なトレーサーとなる。我々のグループでは Db の化学実験に向けた基礎研究[1,2]を進めるとと もに、これらの実験で用いる^{95g}Nb,¹⁷⁹Ta を効率的に製造するために、14 MeV の陽子ビームを 用いた^{nat}Zr(p,x),^{nat}Hf(p,x)反応による Nb, Ta 同位体の生成断面積と収量について調査してきた [3]。本研究ではさらに、24 MeV の重陽子ビームを用いて Nb, Ta 同位体の生成断面積を測定 したので報告する。

【実験】①^{nat}Zr 箔(>99.8%, 19 µm)、^{nat}Ti 箔(99.5%, 20 µm)と^{nat}Ta 箔(99.95%, 19 または 10 µm) 15 枚ずつおよび②^{nat}Hf 箔(97%, 23 µm) 19枚と^{nat}Ti 箔(99.5%, 20 µm) 19枚のスタックに、理研 AVF サイクロトロンから供給される 24 MeV の重陽子ビームをそれぞれ 30 分間照射した。^{nat}Ti 箔 はビームモニター、^{nat}Ta 箔はエネルギーデグレーダーとして使用した。^{nat}Ti(d,x)⁴⁸V モニター 反応により求めた平均ビーム電流は、Zr/Ti/Ta スタックについて 0.49 µA、Hf/Ti スタックにつ いて 0.46 µA であった。照射終了後、各標的箔について Ge 検出器を用いたγ線スペクトロメ トリーを行った。

【結果と考察】^{nat}Zr(d,x)反応においては ^{90g,91m,92m,95m,95g,96}Nb,^{95,97}Zr,^{87m,87g,88}Y、^{nat}Hf(d,x) 反応では^{175,176,178,179,180g}Ta,^{175,179m2,180m,181}Hfの 生成断面積を測定できた。図1に本研究の目 的である^{nat}Zr(d,x)^{95g}Nb,^{nat}Hf(d,x)¹⁷⁹Ta反応の 励起関数を示す。^{nat}Hf(d,x)¹⁷⁹Ta反応(図1(b)) の断面積は本研究において初めて測定され た。励起関数は21.1±0.4 MeV において最大 の断面積 489±50 mb を示した。TALYS-1.4 コード[4]による理論計算を測定した各同位 体の断面積と比較したところ、全体的によい

図 1. (a) ^{nat}Zr(d,x)^{95g}Nb, (b) ^{nat}Hf(d,x)¹⁷⁹Ta 反応の励起関数。

一致を示した陽子ビームの場合[3]とは異なり、殆どの場合において励起関数の形は似ている ものの、測定値との一致は見られなかった。測定した断面積に基づいて見積もった^{95g}Nb (23.6 MeV まで)と¹⁷⁹Ta (23.5 MeV まで)の積算収量はそれぞれ 0.37 MBq/µAh, 0.21 MBq/µAh であっ た。

【参考文献】

[1] M. Murakami et al., APSORC13 24-NCP-07 (2013).

[2] S. Tsuto et al., RIKEN Accel. Prog. Rep. 47, in press.

[3] M. Murakami et al., Appl. Radiat. Isot. 90, 149 (2014).

[4] A. J. Koning et al., in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by

O. Bersillon et al. (EDP Sciences, 2008) p. 211.

Excitation functions for production of Nb and Ta isotopes in the ^{nat}Zr(d,x) and ^{nat}Hf(d,x) reactions MURAKAMI, M., HABA, H., HUANG, M., GOTO, S., KUDO, H.

1A04 On the improvement of material properties and performance of nuclear targets

(Advanced Science Research Center, JAEA¹, University of Mainz², Helmholtz-Zentrum Dresden Rossendorf, HZDR³, Helmholtz Institute Mainz⁴, GSI Helmholtzzentrum für Schwerionenforschung⁵, European Commission, Institute for Transuranium Elements⁶, Technical University Dresden⁷) Vascon A.^{1,2,3}, Wiehl N.^{2,4}, Runke J.⁵, Drebert J.², Reich T.², Trautmann N.², Cremer B.⁶, Kögler T.^{3,7}, Beyer R.³, Junghans A.R.³, Eberhardt K.^{2,4}, Düllmann Ch.E.^{2,4,5}

The success of nuclear science experiments depends to a large extent on the used targets. Molecular plating (MP) is one of the most widely applied methods for the production of thin layers to be used as targets for accelerator and reactor science. The element of interest is electrodeposited from an organic medium either in the constant current or in the constant voltage mode and layers of acceptable uniformity are quickly produced with quantitative yields. To date, drawbacks of the MP technique have been mainly related to the properties of the produced layers, which are frequently defective, with surface cracks, and sometimes with poor structural rigidity (see Figure 1a). Such properties negatively affect the experiments to be performed, especially the irradiation ones. For these reasons, in the last years efforts have been undertaken to improve the quality of the obtained layers. Constant current density electrolysis experiments have been performed with lanthanides as model elements for the studies. Plating parameters like roughness of the deposition substrate, plating solvent, electrolyte concentration, and applied current density have been varied and their effects on the material properties of the produced targets have been investigated with multiple characterization techniques. The combined use of as smooth as possible substrates (e.g., Ti-coated Si wafers) and low volatility solvents (e.g., N,N-dimethylformamide -DMF-) has turned out to be effective for the production of smooth defect-free layers (see Figure 1b). The comparison between the performance of these layers and conventional MP targets has been studied in α spectroscopy experiments with sources containing ¹⁴⁷Sm (α , $T_{1/2} = (1.070 \pm$ $(0.009) \cdot 10^{11}$ y). Improvements in relative detection efficiency of as much as 15% have been achieved. In the symposium, the plating parameters that have a crucial influence on the material properties and performance of nuclear targets will be discussed. Results of the application of the optimized MP procedure to the production of actinide targets (i.e., Pu) will be also shown.

Figure 1. ¹⁴⁷Sm layers grown on Ti-coated Si wafers using pyridine a) and DMF b) as plating solvents.

On the improvement of material properties and performance of nuclear targets

Vascon A., Wiehl N., Runke J., Drebert J., Reich T., Trautmann N., Cremer B., Kögler T., Beyer R., Junghans A.R., Eberhardt K., Düllmann Ch.E.

(清水建設¹、京大炉²、高エネ研³、金沢大 LLRL⁴、金沢大理工⁵)○木下哲一¹、 関本俊²、大槻勤²、桝本和義³、浜島靖典⁴、横山明彦⁵

現在の天然に存在する鉄より重い元素のほとんどは中性子捕獲により作られるが、中性子捕獲 では作られない陽子過剰核(p 核)も低い同位体組成で存在している。この p 核について、現在 ではニュートリノもしくは荷電粒子との核反応が主とした成因とされている。我々のグループで はプロトン捕獲に着目し、質量数 130–150 の p 核存在量を説明可能なプロセスの構築を目指して いる。特に天体内での核反応は励起状態の核の捕獲反応を考慮しなければならない。本研究では 制動放射線を用いた¹⁴⁷Sm(γ,p)¹⁴⁶Pm 反応に着目し、単色光子による励起関数を明らかにするとと もに、(γ,p)反応から励起核への(p, γ)断面積を推定した。

電子ライナックを用いて加速された 10-50 MeV の単色電子ビームを白金コンバータに入射し、 得られた制動放射線を Sm ターゲットに照射した。制動放射線スペクトルは Geant4 コードを用い て見積もった。生成した¹⁴⁶Pm 放射能は HPGe を用いて定量し、核反応断面積を算出した。

巨大共鳴による吸収(Breit-Wigner 分布)にエネルギー依存の定数を乗じた関数で単色光子による(γ,p)励起関数を見積もった。この断面積を用いて、式(1)に示す微細釣合いの法則を用いて、逆 過程の断面積を見積もった。

 $\frac{\sigma_{146Pm^{*}(p,\gamma)}}{\sigma_{147Sm(\gamma,p)}} = \frac{2(2j_{147Sm}+1)}{(2j_{146Pm^{*}}+1)(2j_{p}+1)} \frac{E_{\gamma}^{2}}{2\mu c^{2}E_{p}} \quad (1)$

ここで、 $\sigma_{147Sm(\gamma,p)}$ と $\sigma_{146Pm^*(p,\gamma)}$ は¹⁴⁷Sm(γ,p)¹⁴⁶Pm 断面積とその逆過程の断面積、 j_{147Sm} 、 j_{146Pm^*} 、 j_p は各核種のスピン、 μ は換算質量、cは光速、 E_{γ} と E_p は光子とプロトンのエネルギーを示す。ま た(γ,p)反応における¹⁴⁶Pmの励起エネルギーは、 入射光子のエネルギー、Q値、TALYSコードよ り得られた放出されるプロトンのエネルギース ペクトルより見積もった。図1(a)にエネルギー収 支より得られた入射プロトンエネルギーと¹⁴⁶Pm 励起状態の関係、図2(b)に励起された¹⁴⁶Pmの(p, γ)反応断面積を示す。例えば 6 MeV 程度のプロ トンエネルギーを対象にした場合は、2 MeV 程度 の励起状態の¹⁴⁶Pm が支配的である。理論計算に よる基底状態や 150 keV の励起状態の核の

図1 エネルギー収支より得られる入射プロト ンエネルギーと¹⁴⁶Pmの励起状態の関係(a)、 ¹⁴⁶Pm励起核の(p, γ)反応断面積(b)

¹⁴⁶Pm(p,γ)反応と大きな差は見られない。天体内での核反応は基底状態の核反応断面積に Stellar Enhancement Factor (SEF)を乗じて励起核の断面積が利用される。(p,γ)反応において元素合成温度 下では SEF による励起核の断面積の大きな補正は必要ないと考えられる。

Investigation of p-process around mass number 140 (I) $-^{147}$ Sm(γ ,p) reaction and its reverse process-KINOSHITA, N., SEKIMOTO, S., OHTSUKI, T., MASUMOTO, K., HAMAJIMA, Y., YOKOYAMA, A.

1A06 質量数 140 付近における p プロセス解明に向けた素過程の研究② ____陽子過剰核の (p. γ)反応—

(金沢大院自然¹、清水建設²、阪大院理³、金沢大理工⁴)○林 和憲¹、 上野慎吾¹、木下哲一²、高橋成人³、横山明彦⁴

【緒言】現在太陽系に存在する元素の内、鉄より重い元素の大半は遅い中性子捕獲反応(s プロ セス)や速い中性子捕獲反応(r プロセス)によって元素合成される。しかし一部には中性子捕獲 プロセスでは生成されない中性子欠乏核種(p 核)が存在する。p 核の合成経路には(γ, n)のよう な熱分解や、(p, γ)のようなプロトン捕獲反応、さらには(v_e, e)などのニュートリノとの核反 応が考えられ、それらを用いた理論的モデル計算が存在するがいずれのモデルでも現在の同 位体比の定量的な解明には至っていない。その原因としては、計算モデル構築に不可欠な p 核合成に関わる反応断面積などの核データが不足していることが挙げられる。本研究では質 量数 140 付近の s 核への陽子捕獲反応に関して、p 核である ¹³⁶Ce、¹³⁸Ce、¹⁴⁴Sm の元素合成に 着目し、理論計算を行うためにこれら 3 核種への(p, γ)および(p, n)反応についての核反応断面 積測定を行った。また ¹⁴⁴Sm の存在量を説明することを目的に、温度、密度、元素合成時間 をパラメータに、s 核である ¹⁴²Nd からの陽子捕獲反応によって ¹⁴⁴Sm が合成されるというシ ナリオについて検討した。

【実験】大阪大学核物理研究センターにて、スタック法によるビーム照射実験を行った。酸化 サマリウムの¹⁴⁴Sm 濃縮同位体(濃縮度 94.4%)を高純度アルミニウム箔(純度 99.999%)に 電着することで調製された¹⁴⁴Sm 電着ターゲット(厚さ 0.21-0.26 mg/cm²)を、入射エネルギ ーを調整するディグレーダーの後に 6 枚重ね合わせ 1 つのスタックとしたものを 14 MeV の プロトンビームで 3 時間照射した。また、プラズマスパッタリング法により調製された¹³⁶Ce (濃縮度 21.5%)、¹³⁸Ce(濃縮度 12.9%)ターゲットをディグレーダーの後に 5 枚重ね合わせ それぞれをスタックとし、同じプロトンビームを 1 時間照射した。照射後、分解したターゲ ット各々について Ge 半導体検出器を用いて放射性反応生成物のγ線測定を行った。測定によ って得られた反応生成物の放射能から陽子捕獲過程の反応断面積を求めた。

【結果・考察】実験により、陽子捕獲反応断面積の測定データが 3-8 MeV のエネルギー領域で 得られた。取得した励起関数を計算コード NON-SMOKER[http://nucastro.org/nonsmoker.html] による理論計算値とともに図 1-3 に示した。講演では、¹⁴⁴Sm(p, γ)に着目し、¹⁴⁴Sm の存在量 の時間変化についての理論計算結果、及び核反応断面積の測定値と理論値の差が及ぼす同位 体組成への影響も合わせて報告する。

図 1 Sm-144 + p 反応励起関数 図 2 Ce-136 + p 反応励起関数 図 3 Ce-138 + p 反応励起関数 Investigation of p-process around mass number 140 (II) –(p,γ) cross section measurements on proton rich nuclei–

HAYASHI, K., UENO, S., KINOSHITA, N., TAKAHASHI, N., YOKOYAMA, A.

1A07 質量数 140 付近における p プロセス解明に向けた素過程の研究③ _プロトン捕獲による同位体比のモデル計算—

(金沢大院自然¹、清水建設²、金沢大理工³) 〇上野慎吾¹、木下哲一²、林和憲¹、横山明彦³

【諸言】太陽系には安定な陽子過剰核(p核)が35種類存在する。これらの生成過程(pプロセス)について、熱分解・ニュートリノとの核反応・陽子との捕獲反応が考えられる。また反応が短時間で終わるのか長期間かかったのかについても検討はされているが、いずれの場合も同位体組成の定量的な説明に成功していない。我々のグループでは質量数140付近の核種へのプロトン捕獲反応に着目し、核データの再検討のための測定および核データを用いたモデル計算を行いp核の同位体組成を説明を試みている。質量数130-150には天然に存在するp核が¹³⁶Ce、¹³⁸Ce、¹³⁸La、¹⁴⁴Smの4種類があり、本研究では、温度、密度、反応時間をパラメータに、s核へのプロトンの捕獲によるシナリオで上記のp核の存在量を説明可能なモデルを構築した。また¹⁴⁴Sm へのプロトン捕獲反応の実験値と理論値の比較から計算の補正を行った。

【モデル計算】はじめに、r 過程の影響のない純粋な s 過程による Ba、Nd、Sm 同位体組成を 見積るために、¹³³Cs を出発物質に中性子密度 4×10^8 n/cm³、 4×10^8 K の温度下でのこれらの 3 元素の同位体組成を見積もった。次にこの s 過程で生成した同位体をターゲットに、中性子 密度 4×10^8 n/cm³、プロトン密度(N_p) 10^3 – 10^6 g/cm³、温度(0.5–2.0) $\times 10^9$ K における s 核に 対する p 核の存在量の時間変化を調べた。また、¹⁴⁴Sm へのプロトン捕獲反応の実験値より、 プロトン捕獲反応断面積を 10 倍に補正し計算を行った。中性子捕獲とプロトン捕獲の核反応 断面積には NON-SMOKER コードを用い、中性子とプロトンとの核反応および生成核の放射 壊変を考慮した。

【結果と考察】 s 核に対する p 核の原子数比、すなわち ¹³⁶Ce/¹³⁴Ba、¹³⁸Ce/¹³⁴Ba、¹³⁸La/¹³⁴Ba は (7-8)×10⁸ K が約1年以 上持続すれば、現在の同位体比の説明が可能であるが、¹³⁶Ce/¹³⁸Ce はこの温度条件では現在の同位体比の1/4以下となり、長時間で の元素合成のシナリオでは説明がつかない。次に、短時間での元 素合成のシナリオを検討するため、図 1 にプロトン密度 1000 g/cm³における ¹³⁶Ce/¹³⁴Ba 比および ¹³⁶Ce/¹³⁸Ce 比の元素合成時間 との関係を示す。1000 g/cm³のプロトン密度下では、約1.5×10⁹ K の温度が 1-10 秒持続すれば、上記の同位体比のすべてが現在の 同位体比となると説明できる。またプロトン捕獲反応断面積を 10 倍に補正し計算を行った結果、1000 g/cm³のプロトン密度下では、約 1.25×10⁹ K の温度が 1-10 秒持続すれば、上記の同位体比のす べてが現在の同位体比となると説明できた。質量数 130-150 にお ける現在の太陽系内の p 核の存在量は、プロトン捕獲により説明 可能であることが示唆された。

Investigation of p-process around mass number 140 (III) -model calculation of isotopic abundance based on proton capture reaction-

UENO, S., KINOSHITA, N., HAYASHI, K., YOKOYAMA, A.

104 番元素 Rf の水酸化サマリウム共沈挙動

(阪大院理¹、理研仁科セ²、新潟大院理³、東北大電子光セ⁴、阪大 RI セ⁵、京 大炉⁶)○笠松良崇¹、豊村恵悟¹、横北卓也¹、重河優大¹、高橋成人¹、羽場宏 光²、小森有希子²、金谷淳平²、黄明輝²、森田浩介²、村上昌史^{2,3}、菊永英寿 ⁴、三頭聰明⁴、吉村崇⁵、大槻勤⁶、高宮幸一⁶、篠原厚¹

【緒言】アクチノイド元素よりも原子番号が大きな超重元素は、半減期が数十秒以下と短く、 加速器を用いた核反応で低生成率でしか生成できない。そのため、一原子を対象とした迅速 な実験を多数回繰り返す必要があり、化学実験には大きな困難が伴う。また、一原子の同定 には、α線測定が必要であり、その迅速な試料調製も大きな課題となる。それゆえ、これま でに行われてきた化学実験系は非常に限られてきた。超重元素の化学的性質をより詳細に調 べるためには、より様々な実験手法および化学反応系において実験を行うことが必要である。

本研究では水酸化サマリウムとの共沈挙動を利用した高分解能 α 線測定試料の作成方法を 超重元素の新規化学実験手法として応用することを目指し、これまで基礎実験と迅速な実験 のための半自動沈殿作成装置の開発を行ってきた。また、104 番元素 Rf を研究対象と定め、 同じ4族元素である Zr, Hf および擬 4 族元素の Th についての基礎研究を行い、アンモニア水 や水酸化ナトリウム水溶液の塩基性溶液中での沈殿収率において、これら元素間で明確な差 異を観測した。今回は、加速器オンラインの共沈実験を Zr, Hf および Rf に対して実施した。 【実験と結果】今回、理化学研究所の AVF サイクロトロンを用いて⁸⁵Zr,¹⁶⁹Hf と²⁶¹Rf を合成し、 塩基性溶液中でのサマリウムとの共沈挙動を調べた(Fig. 1)。第一に、Zr と Hf の加速器オン ライン共沈実験を行った。⁸⁵Zr および¹⁶⁹Hf を ^{nat}Ge/^{nat}Gd(¹⁸O, xn)反応で合成しながら、継続的 にガスジェット気流によって化学実験室に送り、自動溶液化装置に捕集した。1分間捕集し た⁸⁵Zr と¹⁶⁹Hf は自動溶液化装置によってサマリウムを含んだ硝酸溶液に溶解された。この試 料に塩基性溶液を加えて10秒間攪拌した後に、半自動沈殿作成装置を用いて共沈試料を作成 した。試料はγ線測定を行い、この放射能と標準試料の放射能から沈殿収率を算出した。沈 殿試料は約 2 分間で迅速に作成することができ、得られた沈殿収率は基礎実験における沈殿 収率と一致することが確認されたため、Rf 共沈実験の条件を決定することができた。

次に²⁴⁸Cm(¹⁸O, 5*n*)反応により²⁶¹Rfを 合成し、同様の手法でサマリウムとの共 沈挙動を調べた。沈殿剤には、0.37, 15 M アンモニア水と 1, 6 M 水酸化ナトリウ ム水溶液を用いた。²⁶¹Rf の同定には理 化学研究所の自動連続 α 線測定装置を 用いた。実験は十分な統計量が得られる ように 1 条件に付き二百回程度以上繰 り返し、観測された²⁶¹Rf の α イベント から沈殿収率を算出した。Rf の共沈挙 動は Zr や Hf とは明らかに異なり、擬同 族元素の Th に近いことが分かった。

Fig. 1. Schematic of online coprecipitation experiment.

Coprecipitation behavior of element 104, Rf, with Sm hydroxide KASAMATSU, Y., TOYOMURA, K., YOKOKITA, T., SHIGEKAWA, Y., TAKAHASHI, N., HABA, H., KOMORI, Y., KANAYA, J., HUANG, M., MORITA, K., MURAKAMI, M., KIKUNAGA, H., MITSUGASHIRA, T., YOSHIMURA, T., OHTSUKI, T., TAKAMIYA, K., SHINOHARA, A.

1A09 104 番元素 Rf 実験に向けた迅速溶媒抽出装置の開発

(阪大院理¹、理研仁科セ²、阪大 RI セ³)○中村宏平¹、横北卓也¹、 笠松良崇¹、工藤祐生²、吉村崇³、高橋成人¹、篠原厚¹

【緒言】104 番元素ラザホージウム (Rf) は超重元素の中では比較的研究例が多い。溶液化学 実験ではこれまで固液抽出を中心に行われており、溶媒抽出での実験例はほとんどない。超 重元素の化学では実験を短時間で完了させる必要があり、短時間で抽出と相分離を行う必要 があるため、超重元素の溶媒抽出挙動を調べるのは非常に困難である。また、分配比を求め るためには短時間で抽出平衡に到達する必要がある。本研究室では、Rfの寿命(約1min)以内 での平衡到達を目的に抽出装置 Flow Injection Extractor (FIE)の開発を行っている。FIE はテ フロンチューブに細かく刻んだテフロンビーズを詰めたものであり、水相と有機相を同時に 流し込むことで2相を細かく混ぜ合わせ、2 相間の拡散速度を高めている。また、実験時間 の短縮のために膜分離法を用いた水相と有機相の分離装置も開発したので併せて報告する。

【実験】⁸⁸Zr と¹⁷⁵Hf を大阪大学核物理研究センターにて、それぞれ⁸⁹Y(*p*,2*n*)⁸⁸Zr と^{nat}Lu(*p*,*xn*)¹⁷⁵Hf 反応で製造し、イオン交換法により精製した。精製した⁸⁸Zr と¹⁷⁵Hf を塩酸に 溶解したものを水相、Aliquat 336 をベンゼンまたは四塩化炭素に溶解したものを有機相とし た。水相と有機相を FIE に同時に流し込むことで抽出を行った。FIE を通過した混合液を p.p チューブに捕集し、遠心分離により 2 相を分離し、それぞれをマイクロピペットで分取しγ 線測定することで分配比を求めた。この結果をバッチ法による平衡到達した結果と比べるこ とで、FIE を用いて平衡到達下の分配比を得るための条件を調べた。相分離実験では、FIE を 通した水相と有機相の混合液を相分離装置により分離した。分離された水相と有機相それぞ れの密度から純度を求めることで相分離装置の性能を評価した。

【結果】実験条件として FIE 内径、ビーズ粒径、 FIE 長さ、有機層溶媒に依存して分配比が変化す ることが確認された。Fig.1 に FIE とバッチ法に よる⁸⁸Zr と¹⁷⁵Hf の抽出実験による塩酸濃度ごと の分配比を示す。この実験条件は、FIEの長さ30 cm、FIE 内径 1.0 mm、テフロンビーズ粒径 250-500 µm、水相は 7.8-11.3 M 塩酸、有機相は 0.01 M Aliquat 336-四塩化炭素溶液、各相流速 500 µL/min であった。Fig.1 ではバッチ法による分配比と FIE による分配比がほぼ一致している。このことから FIE を用いることで、平衡到達時間を1 min 以内 に短縮できることがわかった。相分離実験に関し ては、1段の相分離器のみで 95%以上の純度で 水相と有機相を分離することができた。発表で は、FIE と相分離器を連結させて用いた場合の 実験結果も報告する。

Fig.1 Variation in distribution ratios of ⁸⁸Zr and¹⁷⁵Hf As afunction of hydrochloric acid concentration with 0.01 M Aliquat 336-carbon tetrachloride

Development of a rapid solvent extraction apparatus for rutherfordium NAKAMURA, K.,YOKOKITA, T., KASAMATSU, Y., KUDOU, Y., YOSHIMURA, T., TAKAHASHI, N., SHINOHARA, A.

1A10

Aliquat 336 を用いた Nb, Ta のフッ化水素酸溶液からの溶媒抽出挙動

(新潟大院自然¹、理研・仁科セ²、東北大・電子光セ³、新潟大理⁴)○佐藤大輔 ¹、村上昌史^{1,2}、羽場宏光²、菊永英寿³、大江一弘¹、後藤真一¹、工藤久昭⁴

【緒言】当研究室では、溶液化学の観点から 105 番元素ドブニウム(Db)の詳細な化学的性質の 解明を目的とした研究を進めてきた。本研究では、5 族元素に対して強力な錯形成試薬であ るフッ化物イオンを用い、イオン対抽出剤である四級アンモニウム塩 Aliquat 336 による液液 抽出実験により、Db のフッ化物錯形成を調査することを目的とする。今回は、Db のより軽 い同族元素である ^{95g}Nb および ¹⁷⁹Ta を用いたバッチ実験により、フッ化水素酸からのイオン 対抽出挙動を調査し、Db の化学実験に適切な実験条件の検討を行った。

【実験】実験に用いた^{95g}Nb(*T*_{1/2}=35 d)と¹⁷⁹Ta(*T*_{1/2}=665 d)は、理研および東北大の AVF サイクロ トロンを用いて、Zr, Hf の金属箔標的に陽子ビームを照射することで製造した。目的の核種は 標的からイオン交換分離により精製し、トレーサーとして使用した。精製した^{95g}Nb,¹⁷⁹Ta は 1 M フッ化水素酸中で保存し、実験に用いる際には一旦蒸発乾固した後に目的の濃度のフッ 化水素酸に溶解して用いた。水相 600 µL と有機相として Aliquat 336 を 1,2-ジクロロエタンに 溶解した溶液 600 µL をチューブに入れ、5 分間の振とう及び遠心分離を行った。その後、両 相を 350 µL ずつ別々のチューブに取り分け、ゲルマニウム半導体検出器を用いて X 線および γ線の測定を行い、分配比 D を算出した。ここで、分配比 D は有機相と水相に含まれる放射 能比として定義した。

【結果と考察】結果の一例として、 0.01 M-27 M フッ化水素酸溶液から 10⁻⁴ M Aliquat 336/1,2-ジクロロエ タン溶液へ抽出した結果を図1に示 す。横軸はフッ化水素酸濃度、縦軸 は抽出における分配比 D を表す。 ^{95g}Nb の D 値は、フッ化水素酸濃度 が大きくなるにつれて徐々に減少 していく傾向を示す一方で、179Taの D値はフッ化水素酸濃度が 0.3 M付 近で極大を示した。図1の結果から、 Nb, Taは異なったフッ化物錯体を形 成していることが示唆される。また、 フッ化水素酸濃度を固定し、^{95g}Nb および¹⁷⁹Ta の分配比 D の Aliquat 336 濃度依存性を調査したところ、

図1.0.01 M-27 Mフッ化水素酸からの10⁻⁴ M Aliquat 336/1,2-ジクロロエタン溶液への^{95g}Nb および¹⁷⁹Taの 抽出挙動

Nb, Ta ともに 1 価の陰イオンフッ化物錯体が抽出されていることがわかった。討論会では Aliquat 336 を用いたマクロ量での Nb, Ta の抽出結果についても報告し、これらの結果をもと に抽出化学種に関する考察を行う。

Extraction behavior of Nb and Ta with Aliquat 336 in HF solution SATO, D., MURAKAMI, M., HABA, H., KIKUNAGA, H., OOE, K., GOTO, S., KUDO, H.

Db の化学実験に向けた 5 族元素 Nb, Ta のオンライン逆相クロマト 1A11 グラフィー

(新潟大院自然¹、理研仁科セ²、新潟大理³、原子力機構⁴、金沢大院自然⁵) 〇津藤翔平¹、村上昌史^{1,2}、大江一弘¹、後藤真一¹、佐藤大輔¹、後藤尚哉¹、 小山巧¹、長岡哲也¹、本山李沙³、羽場宏光²、小森有希子²、豊嶋厚史⁴、 北山雄太⁵、福田芳樹⁵、工藤久昭³

【緒言】105 番元素ドブニウム(Db)に対する詳細な化学的知見は未だ得られておらず、今後の研究が待たれるところである。我々は Db の化学実験に向け、同族元素である Nb, Ta を用いたリン酸トリブチル(TBP)によるフッ化水素酸水溶液からの液相抽出および固相抽出を行ってきた¹¹。その結果、Nb と Ta で異なる抽出挙動が確認され、この抽出系が Db の抽出実験に有望であることがわかった。そこで、本研究では Nb, Ta を用いた自動迅速化学分離装置(ARCA)によるオンライン逆相クロマトグラフィー実験を行い、Db の化学実験にむけた最適実験条件を検討した。

【実験】理研 AVF サイクロトロンにおいて、24 MeV の重陽子ビームを用い、^{nat}Zr(d, xn), ^{nat}Hf(d, xn)反応により、 90 Nb($T_{1/2}$ = 14.6 h)、 178 Ta($T_{1/2}$ = 2.45 h)を合成した。核反応生成物を He/KCl ガ スジェット法により搬送し、ARCA 内部の捕集部において 60 秒間捕集した。捕集物を種々の 濃度のフッ化水素酸水溶液で溶解して、流速 0.25-1 mL/min でカラムに流し、7 フラクション に採取した。その後、10 M HF を流速 1 mL/min で流して、各フラクションの重量とγ線を測 定した。カラムのサイズは内径 1.6 mm× 高さ 7 mm で、カラムとしてスチレンージビニルベ ンゼン共重合体である CHP20/P30(三菱化学、

粒径 30 μm)の母体に TBP を担持させた樹脂^[2] を用いた。

【結果と考察】62-wt.% TBP 樹脂に対して1 M HFを1 mL/min で流した時の ⁹⁰Nb, ¹⁷⁸Ta の溶 離曲線を図1に示す。Nb はほとんど樹脂に吸 着せずに溶出している一方で、Ta は溶出体積 が約0.5 mL に溶離ピークを持っており、2つ の元素が異なる溶離挙動を示すことが分かる。 また、Ta のピーク位置から得られる分配係数 がバッチ固相抽出による結果を再現した。こ れはカラム内での抽出が平衡に到達している ことを示している。この実験条件で、Db の化 学実験を行うことが期待される。

図 1.62-wt.% TBP 樹脂と 1 M HF のオンライ ン逆相クロマトグラフィーによる、^{90g}Nb と ¹⁷⁰Ta の溶離挙動。

[1] M. Murakami et al., 5th Asia-Pacific Symposium on Radiochemistry '13 (APSORC13) 24-NCP-07 (2013)
[2] H. Haba *et al.*, Radiochim.. Acta **95**, 1 (2007)

On-line reversed-phase chromatography of group-5 elements, Nb and Ta, for the chemical experiment of dubnium (Db)

TSUTO, S., MURAKAMI, M., OOE, K., SATO, D., GOTO, N., KOYAMA, T., NAGAOKA, T., MOTOYAMA, R., HABA, H., KOMORI, Y., TOYOSHIMA, A., KITAYAMA, Y., FUKUDA, Y., KUDO, H.

TTA 逆相クロマトグラフィーによる超重元素ラザホージウム(Rf) の吸着挙動

(金沢大院自然¹, 原子力機構², 理研³, 東北大電子光セ⁴, 新潟大院理⁵, 金沢大 理工⁶)〇北山雄太¹, 福田芳樹¹, 塚田和明², 豊嶋厚史², 羽場宏光³, 菊永英寿 ⁴, 村上昌史^{3,5}, Huang M. H.², 谷口拓海¹, 上野慎吾¹, 林和憲¹, 横山明彦⁶

【緒言】 本研究の目的は、テノイルトリフルオロアセトン (TTA) を抽出剤として用い、104 番元素ラザホージウム (Rf) のフッ化物錯形成定数を決定することである。我々はこれまで Rf の化学実験に向け、同族元素 Zr、Hf を用いて固液バッチ抽出法や逆相クロマトグラフ法 による基礎実験を行ってきた。その結果、2×10⁵ M 以上のフッ化物イオン濃度となる HF/HNO₃ 混酸水溶液において両法による実験結果が一致し、さらに Zr、Hf の抽出挙動が異な ることを確認でき、この条件が Rf の化学実験に有望であることが分かった。そこで本研究で は、希薄フッ化水素酸濃度条件での HF/HNO₃ 混酸系において Rf の TTA 吸着について調べた ので報告する。

【実験】 理化学研究所の K70 AVF サイクロトロンを用いて ²⁴⁸Cm(¹⁸O, *5n*)²⁶¹Rf 反応により ²⁶⁴Rf (半減期 68 秒)を合成し、オンライン自動迅速化学分離装置 (ARCA)ならびに自動 α 線 測定装置 (RIDER)を利用して TTA を抽出剤に用いた固定相に対する逆相クロマトグラフィーを行った。カラム (内径 1.6 mm×7 mm)に充填する固定相は、TTA を等重量の n-オクタノールに溶解させた溶液と保持担体 (三菱化学、CHP20/P20、粒径 20 μ m)を 1:1の重量比で混 ぜ合わせることにより調製した。核反応生成物を KCl/He ガスジェット法 (流速 2.5 L/min)により化学室に迅速搬送し、ARCA に 200 秒間捕集した。その後、6.0×10⁻⁴ M HF/0.01 M HNO₃(第一溶離液)を流速 0.1 mL/min で 125 μ L 流して、捕集物を溶液化しつつカラムに導入した。その後、0.1 M HF/0.1 M HNO₃(第二溶離液)を流速 0.6 mL/min で 200 μ L 流し、すべての吸着イオンをカラムから溶出させた。Ta 皿上に捕集したそれぞれの溶離液をハロゲンランプと熱した N₂ガスを用いて強熱することにより蒸発乾固し、RIDER の Si 半導体検出器を用いて α 線測定を行った。さらに、同時生成した¹⁶⁹Hf を γ 線スペクトロメトリーによって定量し、収率と吸着挙動をモニターした。

【結果と考察】 予備的結果ではあ るが、図1(a)、(b) にそれぞれ第一溶 離液、第二溶離液で観測されたα線 のスペクトルを示す。作製した測定 サンプルの自己吸収を考慮したエネ ルギー範囲において、第1 溶離液で 17カウント、第2溶離液で10カウン トの²⁶¹Rf 起源のα線を観測した。こ れは、Rf が陽イオンフッ化物化学種 を形成し、TTA によって抽出されて いることを示している。発表では、 Rf の吸着挙動を同族元素 Zr、Hf の挙 動と共に詳細に議論する予定である。

Fig.1. Alpha spectra of 261 Rf and its daughter nuclide 257 No measured with the RIDER in (a) 6.0×10^{-4} M HF/0.01 M HNO₃ and (b) 0.1 M HF/0.1 M HNO₃.

Adsorption behavior of a superheavy element Rf by a TTA-reversed-phase chromatography method KITAYAMA, Y., FUKUDA, Y., TSUKADA, K., TOYOSHIMA, A., HABA, H., KIKUNAGA, H., MURAKAMI, M., HUANG, M, H., TANIGUCHI, T., UENO, S., HAYASHI, K., YOKOYAMA, A.

⁷Li + ¹⁸⁶W 反応で観測された質量非対称核分裂 1A13

(新潟大院自然¹、JAEA²、York Univ³、京大原子炉⁴、CENBG⁵、新潟大理⁶) 〇田村信行¹、廣瀬健太郎²、西尾勝久²、西中一朗²、牧井宏之²、R Orlandi²、 R. Léguillon²、J. Smallcombe²、A. Andreyev³、大槻勤⁴、I. Tsekhanovich⁵、

大江一弘1、後藤真一1、工藤久昭6

1. 背景

核分裂における質量分割は、アクチノイドの様な重 い原子核の非対称分裂から、軽い原子核になるに従っ て対称分裂へと系統的に変化する。非対称核分裂の主 な理由は、二重閉殻である¹³²Sn (Z=50、N=82)付近 の原子核が重い核分裂片として形成されやすいためで あると定性的に考えられている。一方、原子核が軽い 図1 核分裂片質量数分布の理論予測 場合は、液滴的な対称分裂が非対称分裂に比べ優勢とな ると考えられている。

最近、¹⁸⁰Tlのβ⁺崩壊遅発核分裂、すなわち¹⁸⁰Hgの核 分裂における核分裂片の質量分布が測定された[1][2]。 殻構造を考えれば、¹⁸⁰Hg (Z = 80、N = 100) は、中性 子数50の魔法数と陽子数40の準魔法数の影響を受けて、 2つの⁹⁰Zr (Z=40、N=50) に対称分裂すると予測され

P. Möller, 10th ASRC International Workshop, * Nuclear Fission and Structure of Exotic Nuclei ". 2013.March. Tokai. Japan

ていたが、実験結果はこれと異なり非対称分裂であった。図2 実験のセットアップの概略図

この発見を機に、多くの理論的考察がされた。P. Möller と J. Randrup は、核分裂片の質量数 分布を大域的に予測した結果を報告した(図1)。これによると¹⁸⁰Hgは非対称分裂し、さら に W から Ir に至る中性子過剰核では、ユニークな非対称核分裂をすると予測した。

本研究では、Ir 同位体の核分裂に着目し、核分裂特性を系統的に測定することで、第3の 領域ともいえる新たな質量非対称領域を見出すことを目的とした。

2. 実験

実験は、原子力機構のタンデム加速器施設で行った。図2に実験のセットアップを示す。⁷Li +^{182,184,186}Wの核融合反応を用いて複合核^{189,191,193}Irの核分裂を調べることとした。検出器には、 位置検出可能な多芯線式比例計数検出器(MWPC)2台を用い、位置情報および2台のMWPC からの信号の時間差を記録した。これらの情報から運動学的に、核分裂片の質量数を決定し た。この結果から、⁷Li+¹⁸⁶W反応で質量非対称分裂を観測した。

·参考文献

[1] A.N.Andreyev et al., Phys. Rev. Lett 105, 252502 (2010).

[2] J.Elseviers et al., Phys. Rev. C88, 044321 (2013).

Mass asymmetry fission that was observed by $^{7}Li + {}^{186}W$ reaction. TAMURA, N., HIROSE, K., NISHIO, K., NISHINAKA, I., MAKII, H., ORLANDI, R., LEGUILLON, R., SMALLCOMBES, J., ANDREYEV, A., OHTSUKI, T., TSEKHANOVICH, T., MOLLER, P., OOE, K., GOTO, S.,KUDO, H..

1A14 化学トレーサー利用を目指した Tc-99m の半減期変化測定

(東北大電子光セ¹、京大炉²)〇菊永英寿¹、高宮幸一²、大槻勤²

【はじめに】通常,内部転換過程では,原子核内での存在確率が大きい K 殻電子が放出される が,内殻電子の束縛エネルギーより原子核の励起エネルギーが低くなると,内殻電子の放出 が禁止され,より外殻の電子と相互作用するようになる。このような核種では,化学状態(外 殻電子の状態)を変化させると内部転換過程の分だけ半減期が変化する。このような半減期 変化を起こす核種の一つとして⁹⁹Tc^m(質量数 99 のテクネチウムの準安定状態)が知られて いる。本研究ではこの半減期変化を利用して,分光学的方法を用いて構造情報等を測定する ことができない極微量(トレーサー量)のテクネチウムの化学情報を得ることを目指す。こ れまで我々は,先行研究間[1,2]で半減期変化量が異なっていた KTcO4 と Tc₂S7 の化学形で半 減期変化の再測定を行い,0.3%程度の半減期変化を確認している[3]。今回は半減期測定装置 を改良して,より多くの化学形で⁹⁹Tc^mの半減期変化を測定定したので報告する。

【実験】まず,高計数率溶液試料測定用の半減期測定装置を製作した。これまでの半減期測定 装置はアナログ系のマルチチャンネルアナライザ(MCA)を使用しているため,測定できる 試料の強さが制限されていた。今回作成した装置は,高計数率試料に対応して統計精度を上 げられるようにフラッシュ ADC ベースの MCA を使用しており,⁹⁹Tc^mの半減期変化測定を効 率よく行えるようにした。また,従来の半減期測定装置は少量の固体物質しか測定試料にで きなかったが,今回作製したものは数 mL の溶液試料も測定できるように設計している。

⁹⁹Tc^mは日本アイソトープ協会から購入した。購入した ⁹⁹Tc^mはアルミナカラムに 2 回通し, ⁹⁹Mo を可能な限り除去してから実験に用いた。測定試料は 2 種類の化学形を 1 セットとして, 同じ ⁹⁹Tc^m精製溶液から作成した。ヘキサクロロテクネチウム酸([TcCl₆]²⁻, Tc(IV)) および過 テクネチウム酸(TcO₄⁻, Tc(VII)) の化学形で半減期変化を測定する場合は以下のように試料 調製を行った。まず,約 400 kBq の ⁹⁹Tc^m溶液を分取し,蒸発乾固した。[TcCl₆]²試料は,残 さを 12 M HCl 5mL に溶解しガラスバイアル瓶に封入して作成した。TcO₄-試料は,残さを蒸 留水 5mL に溶解し,ガラスバイアル瓶に封入して作成した。

【結果と考察】 蒸留水中と 12M 塩酸中の ⁹⁹Tc^mの半減期には 0.1%の差が観測された。

```
蒸留水: 6.0101±0.0023 h (TcO4)
```

12 M HCl : 6.0170 ± 0.0022 h ([TcCl₆]²⁻)

この差はともに Tc の酸化数が+7 である KTcO4 と Tc2S7 と比べて小さい。このことは ⁹⁹Tc^mの 半減期変化は Tc の酸化数の違いよりも錯形成する配位子の違いによるほうが強く影響する ことを示している。講演では酸濃度依存性などの化学トレーサーとしての利用についても議 論する予定である。

【参考文献】

[1] K. T. Bainbridge et al., Phys. Rev. 90, 430 (1953)

[2] H. Mazaki et al., Phys. Rev. C 21, 344 (1980)

[3] H. Kikunaga et al., Proc. Radiochim. Acta 1, 113 (2011)

Variation measurements of decay constants of Tc-99m as a chemical tracer KIKUNAGA, H., TAKAMIYA, K., OHTSUKI, T.

1A15 気体充填型反跳分離装置 GARIS-II の非対称系反応に対する性能試験 (理研仁科セ¹、山大院理工²、埼大院理工、東京理大院⁴、新大院自⁵、原子力機構⁶、九大理⁷) o加治大哉¹、森本幸司¹、羽場宏光¹、若林泰生¹、武山美麗^{1,2}、山木さやか^{1,3}、田中謙伍^{1,4}、M. Huang¹、金谷淳平¹、村上昌史^{1,5}、浅井雅人⁶、森田浩介^{1,7}

<u>はじめに</u>

理研仁科加速器研究センターでは、アクチノイド標的を用いた重イオン融合反応によって 生成する超重核の分離・収集に特化した新しい気体充填型反跳分離装置 GARIS-II の開発を行 っている。これまでに、²⁴¹Am 標準線源からのα線、⁴⁰Ar ビームによる標的の0度反跳核、な らびに⁴⁰Ar 誘導核反応生成物を用いて、気体充填型反跳分離装置としての基本動作(低バック グランド環境かつ高通過効率を有すること)を確認してきた[1,2]。本研究では、²²Ne 誘導核融 合反応によって生成する核反応生成物を用いて、GARIS-II の性能を評価した。

実験

実験は, 理研重イオン線形加速器施設で行った。主要な実験条件を以下に示す。 Target: 300 µg/cm²¹⁹⁷Au on 60 µg/cm² C Projectile: 114 MeV ²²Ne⁶⁺ Filled gas: pure He or He-H₂ mixture (H₂ 36%)

結果と考察

GARIS-II 設計当初から、非対称系反応に 対するバックグラウンド低減対策として He-H₂混合ガスの使用を検討してきた。今回 はじめて、非対称系反応¹⁹⁷Au(²²Ne,5n)²¹⁴Ac に対して He-H₂混合ガスを用いた初動試験 を行った。その際に得られた結果を図1に示 す。

図 1. GARIS-II 焦点面における²¹⁴Ac の強度分 布。充填ガスとして、Pure He と He-H₂混合ガ スを用いた場合の比較。

はじめに、充填ガスとして Pure He を用いて焦点面での²¹⁴Ac 強度が最高となる Bp値を探 した後、充填ガスを変えて同様の測定を行った。強度分布のピーク位置は 11%高い方へシフ トし、²¹⁴Ac の強度自体も 20%上昇した。前者は充填ガス中を運動する反跳イオンの平均平衡 電荷が小さくなった事に由来し、後者は He-H₂ 混合ガスとの多重散乱の影響が小さくなって いることを意味する。強度分布の最確値でのバックグラウンド計数率は 589 cps(pure He)から 120 cps (He-H₂ 混合ガス)へと激減し、He-H₂ 混合ガスの有用性を実験的に検証することができ た。

本報告では、これらの詳細を含め本研究で得られた非対称系に対する GARIS-II の性能 (通 過効率およびバックグラウンドレベル)について紹介する。

<u>参考文献</u>

[1] D. Kaji et al., Nucl. Instrum. Methods B317, 311 (2013).

[2] D. Kaji et al., JPS Conf. Proc. 1, 013051 (2014)

Performance test of a gas-filled recoil separator GARIS-II for asymmetric fusion reactions KAJI, D., MORIMOTO, K., HABA, H., WAKABAYASHI, Y., TAKEYAMA, M., YAMAKI, S., TANAKA, K., HUANG, M., KANAYA, J., MURAKAMI, M., ASAI, M., MORITA, K.

(原子力機構¹、茨城大²、徳島大³、理研仁科セ⁴、新潟大⁵、マインツ 大⁶、CERN⁷)〇佐藤哲也¹、浅井雅人¹、金谷佑亮^{1,2}、塚田和明¹、豊嶋 厚史¹、A. Vascon¹、武田晋作^{1,3}、水飼秋菜^{1,2}、永目諭一郎^{1,2}、市川進 -^{1,4}、牧井宏之¹、長 明彦¹、阪間 稔³、大江一弘⁵、佐藤大輔⁵、M. Schädel¹、 J. V. Kratz^{1,6}、T. Stora⁷

原子番号が 100 を超える元素では、対象元素に安定または長寿命同位体が存在せず、加速 器を用いた重イオン反応で生成する短寿命同位体しか取り扱うことができない。そのため、 これまでに第一イオン化エネルギー(IP)が測定された例はなかった。我々は、このような"原 子一個の化学"的取扱いが要求される重・超重元素に適用可能な IP 決定法を確立するため、 高温の金属表面で起こる表面電離過程に着目した。本手法では、表面電離過程におけるイオ ン化効率が IP 依存性をもつことを利用して IP を決定する。今回、本手法を用いて、重アク チノイド元素ノーベリウム(No, Z = 102)の IP を決定した。

実験は、原子力機構タンデム加速器実験施設で行った。本実験系におけるイオン化効率の IP 依存性を調べるため、種々の核反応^{nat}Ge+¹¹B,¹⁵¹Eu/¹⁵⁶Gd/¹⁶²Dy+¹¹B,¹³⁶Ce/¹⁴¹Pr/¹⁵⁹Tb/¹⁴¹Nd/¹⁴⁷Sm +¹¹B ならびに⁴⁵Sc+¹¹B を用いて、短寿命同位体⁸⁰Rb,¹⁵⁷Er,¹⁶²Tm,¹⁶⁸Lu,^{142,143}Eu,^{143m}Sm,¹⁴⁸Tb,^{153,154}Ho,¹⁶⁵Yb ならびに⁴⁹Cr を生成し、各同位体のイオン化効率を測定した。タンデム加速器 からの重イオンビームを用いて生成した核反応生成物は、He/CdI₂ガスジェット搬送法により、 オンライン同位体分離器(JAEA-ISOL)に装着された表面電離型イオン源へと搬送される[1]。 搬送された核反応生成物は、イオン源内で表面電離法によりイオン化された後、加速され、 質量分離される。質量分離により選別された目的同位体イオンを ISOL 末端で捕集し、αまた はγ測定によりイオン収量を決定する。イオン化効率を算出するため、ガスジェット搬送され た核反応生成物の直接捕集・測定も合わせて行った。同様に、²⁴⁸Cm(¹³C, 4n)反応により²⁵⁷No (半減期 24.5 秒)を用いて、同一イオン化条件下における No のイオン化効率を測定した。

以上の結果、イオン源温度 2800 K および 2900 K について、約 5.5 eV~7 eV の範囲で IP 決定 が可能な IP-イオン化効率相関曲線を得ることができた。²⁵⁷No のイオン化効率は、2900 K の とき 0.8 %、2800 K のとき 0.6%であった。得られたイオン化効率に対して相関曲線を適用し、 No の IP を求めたところ、その値は 6.6 eV であった。本測定値は、これまで No について軽 いアクチノイド元素からの外挿により見積もられた値 6.65 eV[2]とよく一致した。

[1] Sato, T. K. et al. Rev. Sci. Instrum. 84 (2013) 023304.

[2] Sugar, J., J. Chem. Phys., **60** (1974) 4103.

Measurement of the first ionization potential of nobelium (No, Z=102)

SATO, T. K., ASAI, M., KANEYA, Y., TSUKADA, K., TOYOSHIMA, A., VASCON, A., TAKEDA, S., MITSUKAI, A., NAGAME, Y., ICHIKAWA, S., MAKII, H., OSA, A., SAKAMA, M., OOE, K., SATO, D., SCÄDEL, M., KRATZ, J. V., STORA, T.

1A17 超アクチノイド元素シーボーギウム (Sg) の還元にむけた同族元素 Mo と Wの電解還元

(原子力機構¹、広島大²、新潟大³、金沢大⁴、オスロ大⁵、茨城大⁶、理研⁷、 大阪大⁸、マインツ大⁹、GSI¹⁰)○豊嶋厚史¹、宮下直²、大江一弘³、北山雄太⁴、

Hans Vegeland Lerum⁵、後藤尚哉³、金谷佑亮^{1,6}、小森有希子^{7,8}、水飼秋菜^{1,6}、Alessio Vascon¹、 浅井雅人¹、佐藤哲也¹、塚田和明¹、北辻章浩¹、永目諭一郎¹、Matthias Schädel¹、Mohamed Fathy Attallah⁵、Nalinava Sen Gupta⁵、Jon Petter Omtvedt⁵、津藤翔平³、押見吉成³、小山巧³、田中彰 ³、佐藤大輔³、笠松良崇⁸、横北卓也⁸、重河優大⁸、篠原厚⁸、古賀和樹²、金子政志²、横山 明彦⁴、羽場宏光⁷、Minghui Huang^{1,7}、Jens Volker Kratz⁹、Valeria Pershina¹⁰

【緒言】我々のグループでは、超アクチノイド元素シーボーギウム(Sg)の還元実験に向けた 準備実験を進めている。実験に使用できる²⁶⁵Sg は半減期が約10秒と短く、生成断面積も小 さいため、以下の手順の連続オンライン実験を行う:1)Sg を水溶液に溶解、2)フロー電解 カラムで電解還元、3)還元された4価イオンと還元されていない6価イオンを溶媒抽出によ り分離、4)液体シンチレーション測定。本研究では、Sg の同族元素である^{93m}Mo ならびに ¹⁷⁶Wを用い、上記の2)電解還元と3)溶媒抽出分離が可能な溶液条件を探索した。

【実験】実験は原子力機構タンデム加速器施設において行った。⁷Li ビームや¹¹B ビームを用 いた重イオン核反応により^{93m}Mo ならびに¹⁷⁶W を生成した。これらを He/KCl ガスジェット 法により化学室まで搬送し、3 分間捕集した後、数百µL の硫酸水溶液あるいは硫酸と過塩素 酸の混合水溶液に溶解した。これを 0.4 V から-1.4 V までの電圧(vs. Ag/AgCl 参照電極)を 印加したフロー電解カラムに導入した後、カラムからの溶出液を収集した。さらにこの溶出 液をトリイソオクチルアミン(TOA) – トルエン溶媒と混合して1 分間振とうした後、30 秒

間遠心分離した。その後、両相から同量分取して γ線を測定し、分配比 D を評価した。D は有機相 と水相に含まれる放射能比として定義した。

【結果と考察】一例として硫酸/過塩素酸水溶液で 電解還元し、0.2 M TOA へ抽出した結果を図 1 に 示す。横軸は電解における印加電圧、縦軸は抽出 における D 値を示している。Mo の D 値は-0.4 V 以下で急激な減少を示す一方、W のそれは変化し ていない。このような変化は他の分離条件におい ても観測されており、W が Mo に比べて還元され 難い事を示している。討論会では、他の電解条件 や抽出条件についても報告する。

図 1. 0.4 V から-1.4 V での電解後の 0.1 M 硫酸/0.1 M 過塩素酸から 0.2 M TOA への ^{93m}Mo と ¹⁷⁶W の抽出挙動。

Electrolytic reduction of Mo and W as lighter homologues of seaborgium (Sg) TOYOSHIMA, A., MIYASHITA, S., OOE, K., KITAYAMA, Y., LERUM, H. V., GOTO, N., KANEYA, Y., KOMORI, Y., MITSUKAI, A., VASCON, A., ASAI, M., SATO, T. K., TSUKADA, K., KITATSUJI Y., NAGAME, Y., SCHÄDEL, M., ATTALLH, M. F., GUPTA, N. S., OMTVEDT, J. P., TSUTO, S., OSHIMI, Y., KOYAMA, T., TANAKA, A., SATO, D., KASAMATSU, Y., YOKOKITA, T., SHIGEKAWA, Y., SHINOHARA, A., KOGA, K., KANEKO, M., YOKOYAMA, A., HABA, H., HUANG, M., KRATZ, J. V., PERSHINA, V.

1801 メスバウアー分光法及び放射化分析法を用いた

東京湾浚渫窪地における酸化還元状態の評価

(東大院総合¹、京大原子炉²) 〇山形武広¹、小豆川勝見¹、奥村良²、 高宮幸一²、松尾基之¹

【緒言】内湾である東京湾では夏期を中心に貧酸素水塊が発生するが、その原因として考えら れる浚渫窪地と貧酸素水塊との相関関係は未だに明らかになっていない。そこで、当研究室 では、過去に発生した貧酸素水塊の挙動が直下に存在する底質に保存されることに着目し、 底質中の元素濃度や化学状態から酸化還元状態の評価を行うことを試みた。この度、東京湾 浚渫窪地から採取した底質コアを鉛直(堆積)方向に裁断し、機器中性子放射化分析(INAA)法 により酸化還元状態に敏感な元素である Fe, Mn, U, Th, Ce の定量を行い、メスバウアー分光 法による Fe の状態分析を行ったので報告する。

【試料採取・実験】底質試料採取は2011 年 8 月(貧酸素水塊発生期)に、幕張沖浚渫窪地内および 比較対照点たる平場において行った。採取した底質コアは、従来よりも高い時間分解能での 解析を行うため、0.6 cm ごとに細分化した。これらの試料につき、京都大学原子炉実験所研 究用原子炉で INAA 法による元素濃度の分析を行った。メスバウアースペクトルの測定は、 1.1 GBq の⁵⁷Co/Rh 線源を用い、Velocity=±10.0 mm/s で行った。底質中に maghemite(x-Fe₂O₃)

および pyrite(FeS2)が存在する場合は、そのピーク位置を固定して解析を行った。

【結果と考察】底質コアの⁵⁷Fe メスバウアースペクトルを解析したところ、浚渫窪地および平 場の全ての層において、粘土鉱物由来の Fe³⁺、珪酸塩由来の Fe²⁺、および酸化的環境下で生 成する maghemite が観測された。また、平場の最表層を除く全ての層、および浚渫窪地の中・ 下層部において、還元的環境下で生成する pyrite が観測された。pyrite の割合は、平場の方が 浚渫窪地より高く、平場は浚渫窪地より還元的であったものと考えられる。

INAA 法により、U, Th, Ce の濃度を求め、Th/U, Ce/U 比を算出したところ、浚渫窪地・平場とも表層でこれら の比が大きくなり、平場の方が浚渫窪地より比が小さく なる傾向が見られた。Th, Ce は酸化的であるほど、U は 還元的であるほど沈殿を生じるので、表層は中・下層に 比べて酸化的であり、平場は浚渫窪地よりも還元的であ ったことが示唆されたが、これはメスバウアースペクト ルにおける pyrite の割合に関する結果と整合的である。

よって、浚渫窪地中・下層部および平場は、pyrite が 生成しUも沈殿する程度還元的であったと考えられる。

また、浚渫窪地の表層で Fe, Mn の濃度が小さくなっ たが、両元素は酸化的環境下で沈殿するため、表層には 還元的な海水が浸透し、両元素が溶脱したものと考えら れる。このことから、浚渫窪地の表層は、Fe が溶脱す る程度には還元的だったが、U が沈殿したり pyrite が生 成したりするほど還元的ではなかったと考えられる。

図. 東京湾幕張沖浚保洼地の広質の
 ⁵⁷Fe メスバウアースペクトル
 (上:3.5-4.1 cm、下:20.0-20.8 cm)

 $(\pm : 3.5 - 4.1 \text{ cm}, \uparrow : 20.0 - 20.8 \text{ cm})$

Evaluation of Redox Conditions at Dredged Trenches in Tokyo Bay by Mössbauer Spectroscopy and Neutron Activation Analysis.

YAMAGATA, T., SHOZUGAWA, K., OKUMURA, R., TAKAMIYA, K., MATSUO, M.

1B02 1,2-ビス(4-ピリジル)エタンで架橋した集積型鉄錯体のアニオン混晶に よるスピン変化

(広大院理¹、広大 N-BARD²)o土手 遥¹、中島 覚²

【緒言】 集積型錯体のアニオン混晶は配位子場を微妙に制御できる可能性があり興味深い。 これまで 1,3-ビス(4-ピリジル)プロパン(bpp)で架橋したアニオン混晶の集積型鉄錯体を合成 した¹⁾。元素分析より合成で加えた NCS と NCBH₃の割合より NCS が多くなる傾向があるこ と、粉末 X 線回折測定より NCS が増加すると(002)面の回折が高角度側にシフトすることが 分かった¹⁾。メスバウアースペクトルは、純粋な NCS 錯体と NCBH, 錯体のスペクトルの重 ね合わせに近く、低スピン種の割合に混晶の効果が見られた。本研究では1,2-ビス(4-ピリジル) エタン(bpa)で同様のアニオン混晶実験を行った。純粋な bpa 錯体ではゲストを包接させることに よりスピンクロスオーバーが確認されているので、包接体についてもアニオン混晶実験を行った。 【実験】合成は直接混合法で行った。すなわち、一方のビーカーに硫酸鉄(2mmol)、アニオン (2mmol, 総量)、アスコルビン酸(適量)を水 10ml に溶かし、もう一方のビーカーに bpa(2mmol) を水 20ml に溶かしたものを準備する。この溶液を一つにして強く撹拌する。30 分程度撹拌 したのち、目的物を吸引濾過する。水、エタノールで軽く洗い、真空乾燥させる。加えるア ニオンは 0.2mmol 刻みで変えた。包接体を合成する際は bpa を加えたビーカーに p-ジクロロ ベンゼン(2mmol)を加え、このビーカー内の溶液だけをエタノール 20ml に変更した。NCS と NCBH₃の割合は元素分析を用いて決定し、構造は粉末 X 線回折で推定し、メスバウアー分光 法で鉄のスピン状態を調べた。

【結果】元素分析では bpp 錯体同様、合成時に使用した NCS と NCBH₃の割合より NCS が多くなる 傾向が見られた。また粉末 X 線回折では(20-2)と(11-2)の回折で NCS が増加するにつれて高角度 側にシフトする傾向にあった。メスバウアースペクトルでは、混晶にすることによりアニオンが 多い種のダブレットに加えて新たに四極分裂値の小さなダブレットの2種類が観測された。異性 体シフト値よりすべて高スピン状態であると推定された。四極分裂値を図1にまとめた。外側の ダブレットの四極分裂値はアニオンの割合の変化により影響を受ける。小さなダブレットは、面 積強度が、アニオン比が1:1付近で最大になることからアニオンが一つずつ配位した錯体の可

能性があるが、四極分裂値が小さくなる理 由はわからない。また、bpp 錯体ではアニ オンが一つずつ配位した錯体は得られな かったが、それとの違いは検討中である。 また、*p*-ジクロロベンゼンを包接させるこ とによりスピンクロスオーバー挙動が見ら れた。純粋な NCS 包接錯体ではわずかに低 スピン種が観測されるのみである。一方 NCBH₃錯体では*p*-ジクロロベンゼンを包接 しない。今回、アニオン混晶にすることに より低スピン種の増加が認められたのは、 NCBH₃錯体部分も*p*-ジクロロベンゼンを包 接したためである可能性がある。

図 1. 非包接体の NCS の量対 Q.S.値のプロット

1) H. Dote et al., J. Radioanal. Nucl. Chem., accepted (2014).

Difference of spin state in anion-mixed assembled crystals bridged by 1,2-bis(4-pyridyl)ethane DOTE, H.,NAKASIMA, S.

1B03 混合原子価ペンタフルオロ安息香酸鉄三核錯体の2つ多形の合成とメス パウアー分光法による原子価トラップ/デトラップの観測

(大同大学¹・東レリサーチセンター²・東邦大学³・日本大学(文理)⁴・東京工業大学⁵) ○小木曽 了¹、酒井陽一¹、尾中 証¹、中本忠宏^{2,1}、高橋 正³、高山 努¹、尾関智二⁴、 小林雄介⁵

【はじめに】 混合原子価三核カルボン酸鉄 錯体、 $Fe^{II}_{2}Fe^{II}O(RCOO)_{6}L_{3}$ は、ほぼ同じ環境 下にある3つの鉄イオンをもつ。我々はこれ までジクロロメタンを結晶溶媒としてもつ混 合原子価ペンタフルオロ安息香酸鉄三核錯体 $Fe_{3}O(C_{6}F_{5}CO)_{6}(C_{5}H_{5}N)_{3}CH_{2}Cl_{2}$ を合成し、低温

(5K)では原子価トラップ、高温(300K)で は原子価デトラップ(平均化)となることを ⁵⁷Fe メスバウアー分光法により明らかにした。 また単結晶X線解析によりこの結晶は六方晶 系であることを確かめた¹⁾²⁾。

最近、合成の最終段階の結晶化の方法を変え ることによって、晶系が異なる結晶が得られ ることを見出し、これは既報の結晶とは全く 異なる原子価トラップ/デトラップ現象を示 すものを見出したので報告する。

【実験】 $Fe^{3+}_{2}Fe^{2+}O(C_{6}F_{5}COO)_{6}(C_{5}H_{5}N)_{3}CH_{2}Cl_{2}$ の合成はこれまでの方法で行った。新しい型 の錯体が上記の組成であることは元素分析や IR から確認した。 $^{57}Fe-メスバウアースペクトルはこ$ れまで同様、透過法により温度変化を測定した。

のメスバウアースペクトルの温度依 存性

【結果と考察】 図に新型錯体のメスバウアースペクトルの温度依存性(78~300K)を示す。 比較のために、これまでの六方晶系のスペクトル(5.78.300K)も示す。図から分かるように 新型錯体においては高温(300K)でも原子価トラップであることが示された。新型錯体の粉 末 XRD 測定の結果、六方晶系のこれまでのものとは異なるパターンを示した。この多形は斜 方晶系であると思われるが、現在検討中である。詳細な測定結果、合成法やメスバウアー挙 動については当日報告する予定である。

1) Y. Sakai, et al. Hyp. Int., 205 (2012) 1

2) S. Onaka et al. Dalton Trans., 43 (2014) 6711

Synthesis and Mössbauer Spectroscopic Observation of Valence-trapping and Detrapping of two Polymorphs of Mixed-valence Trinuclear Iron Pentafluorobenzoate Complex. OGISO, R., SAKAI, Y., ONAKA, S., NAKAMOTO, T., TAKAHASHI, M., TAKAYAMA, T., OZEKI, T., KOBAYASHI, Y.,

1B04 不純物 Al と In をドープした Zn0 中の酸素空孔形成エネルギーの決定

(金大院自然¹、金大理工^{1,2}、京大原子炉³) 〇小松田沙也加¹、佐藤 渉^{1,2}、大久保嘉高³

【はじめに】酸化亜鉛(ZnO)は半導体としての利用が注目されており、近年では共ドープされた 13 族元素や磁性金属が形成する局所構造とその制御に関する研究が進められている。我々は、¹¹¹In(→¹¹¹Cd)をプローブとする γ 線摂動角相関(PAC)法により、ZnO 中に共ドープされた不純物 Al と In が形成する局所構造を調べている[1,2]。我々のこれまでの研究において、ZnO 中に導入された 100 ppm の Al と 100 ppt の ¹¹¹In(→¹¹¹Cd)がどちらも非常に希薄な濃度にも関わらず空気中での熱処理により局所的に凝集して強く会合する現象が見出された。一方で、会合状態が形成された試料を真空中で熱処理することにより ¹¹¹In が Al から解離して欠陥の無い Zn の置換サイトへ移るという、占有サイトの熱処理条件依存性を観測した[2]。即ちこの解離反応には酸素濃度が関与している可能性を示唆している。本研究では、真空中で等温/等時アニーリングを施した 100 ppm Al-doped ZnO を調製し、¹¹¹In(→¹¹¹Cd)プローブを用いたPAC 測定を行った。スペクトルを解析して Al と In の解離の機構について調べた結果、この解離反応が ZnO の酸素空孔の形成に誘起された現象であることをつきとめた。

【実験】Alの濃度がZnに対し100 ppmとなるように、Al(NO3)3・9H2Oを溶解したエタノール溶 液とZnO粉末を混合し、エタノールが完全に蒸発するまで加熱・撹拌して粉末試料を得た。 この試料から錠剤を複数枚成形し、空気中1273 Kで3時間焼成した。得られた試料に¹¹¹In塩酸 溶液を滴下し、空気中1373 Kで2時間焼鈍した。得られた試料の一つを室温でPAC測定した後、 残りの試料をさらに真空中1123 Kで1~25時間焼鈍し、それぞれ室温でPAC測定を行った。

【結果】Fig. 1(a)は空気中 1373 K で焼鈍して得られた試料の PAC スペクトルであり、¹¹¹In が

Al と会合していることを示唆している。Fig. 1(b)、1(c)は 空気中での熱処理後、さらに真空中 1123 K でそれぞれ 100 分、25 時間焼鈍して得られた試料の PAC スペクトルであ る。Fig. 1(b)では Fig. 1(a)に見られる成分の他に、¹¹¹In(→ ¹¹¹Cd)が ZnO の Zn サイトを単独で置換している際に観測 される成分(*t* = 200 ns 周辺のピーク)が新たに観測され、Fig. 1(c)ではその成分がより顕著に現れた。これは希薄酸素濃 度での焼鈍により In が Al から解離すること、またその解 離が焼鈍時間に依存することを表している。一般に金属酸 化物では希薄酸素濃度での焼鈍により酸素空孔が生じる ことが分っている。従ってこの解離の過程は酸素空孔形成 に伴って生じる可能性が考えられる。本発表では解離の焼 鈍時間依存性や焼鈍温度依存性について調べた結果を示 し、解離の速度定数やこれらの値を基にして求めた活性化 エネルギーについて議論する。

[1] S. Komatsuda, W. Sato, S. Kawata, and Y. Ohkubo: J. Phys. Soc. Jpn., **80** (2011) 095001.

[2] S. Komatsuda, W. Sato, and Y. Ohkubo: J. Radioanal. Nucl. Chem., in press.

Fig. 1. (a) PAC spectrum of $^{111}\text{In}(\rightarrow ^{111}\text{Cd})$ in 100 ppm Al-doped ZnO annealed in air at 1373 K. PAC spectra of $^{111}\text{Cd}(\leftarrow ^{111}\text{In})$ in 100 ppm Al-doped ZnO annealed in vacuum at 1123 K (b) for 100 min and (c) for 25 h after the measurement of the spectrum (a).

Determination of formation energy of oxygen vacancies in zinc oxide doped with Al and In impurities KOMATSUDA, S.,SATO, W., OHKUBO, Y.

1B05 超イオン伝導体ヨウ化銀中の¹¹¹Ag のダイナミクス

(金大理工¹、金大院自然²、金大物化³、福岡大理⁴、京大原子炉⁵) 〇佐藤 渉^{1,2,3}、水内理映子²、入岡奈津美³、小松田沙也加²、川田 知⁴、 田岡 東^{1,2}、大久保嘉高⁵

【はじめに】イオン伝導体は、全固体電池やセンサーの材料として広く応用できる可能性を持つ物質である。将来のナノデバイスへの応用の観点から、近年、ナノサイズの超イオン伝導体であるヨウ化銀(AgI)に注目が集まっており、常温での高伝導率の実現に向けて精力的に研究が行われている。AgIの超イオン伝導は高温のα相 (≥ 420 K)における Ag⁺イオンのサイト間のホッピングによるが、上記のとおりα相は高温でのみ存在する結晶相であるため、室温における超イオン伝導の実現は困難とされてきた。最近牧浦らは、有機ポリマーであるpoly-N-vinyl-2-pyrrolidone (PVP)でコーティングすることで AgI 粒子のナノ化に成功し、室温でも部分的にα相が維持されることを報告した[1]。この物質の実用化のためには、Ag⁺イオンのダイナミクスをより詳細に理解する必要がある。本研究では、¹¹¹Ag(→¹¹¹Cd)をプローブとする y 線摂動角相関法 (TDPAC)によって微視的な視点から Ag⁺のホッピング挙動を調べ、マクロで得られる伝導性と相補的な情報を得ることを目的として実験を行った[2]。

【実験】PVP 水溶液、および等物質量の AgNO₃ 水溶液と NaI 水溶液を混合して PVP でコーティングした AgI(以下 PVP-AgI)を合成した。乾燥試料を TEM で観察したところ、粒子サイズが数十ナノメートルであることが分かり、目的の試料が合成されていることが確認できた。

錠剤成形した粉末 Pd を KUR にて中性子照射し、¹¹⁰Pd(*n*, *y*)反応で放射性 ¹¹¹Pd および ^{111m}Pd を生成した。短寿命核の放射能の冷却後、照射試料を濃硝酸中で加熱溶解し、¹¹¹Pd および ^{111m}Pd の β 壊変生成物の ¹¹¹Ag を陰イオン交換クロマトグラフィーにて無担体で単離した。この ¹¹¹Ag を原料と同時に混入させて PVP-Ag(¹¹¹Ag)I を合成した。得られた試料を乾燥させた 後、高温側から低温側にかけて順次 ¹¹¹Ag(\rightarrow ¹¹¹Cd)をプローブとする TDPAC 測定を行った。

【結果と考察】Fig. 1 に PVP-Ag(¹¹¹Ag)I の摂動角相関スペクトルを示す。得られたスペクトルはいずれも指数関数的に 減衰している。これはプローブ核に作用する核外場が高速 で時間変動する場合に観測される典型的な現象で、 ¹¹¹Ag(→¹¹¹Cd)プローブ核が核外場から動的な摂動を受けて いることを示している。即ち、これらのスペクトルは Ag⁺ のホッピングによる電場勾配の時間変動を反映したもので あると考えられる。注目すべきは、333 K で得られたスペクトルが示すとおり α 相の存在領域よりも低温で動的摂動が 観測されたことである。この現象は室温においても部分的 に観測された。本研究では、緩和定数の温度依存性から、 Ag⁺の運動に関わる活性化エネルギーを求め、バルクのイオン伝導現象と比較を行った。詳細は講演で報告する。 [1] R. Makiura *et al. Nature Mater.* **8**, 476 (2009).

Fig. 1. TDPAC spectra of 111 Ag(\rightarrow^{111} Cd) in PVP-AgI measured at the temperatures indicated.

[2] W. Sato et al. Chem. Phys. Lett. 609, 104 (2014).

Dynamics of ¹¹¹Ag in a superionic conductor AgI SATO, W., MIZUUCHI, R., IRIOKA, N., KOMATSUDA, S., KAWATA, S., TAOKA, A., OHKUBO, Y.

1B06

40 MeV 重陽子照射で発生する高速中性子による医療用放射性核種の合成

(原子力機構¹、九大総理工²)○塚田和明¹、佐藤望¹、渡辺智¹、石岡典子¹ 初川雄一¹、橋本和幸¹、金政浩²、川端方子¹、佐伯秀也¹、永井泰樹¹

【緒言】核医学用放射性同位体(RI)は、主に癌などに対する高感度の診断及び治療が可能である ため世界中で重用されている。我々は、診断用 RI として⁹⁹Mo(半減期 66 時間)を、治療用 RI とし て⁹⁰Y(同 64 時間)を、そして診断・治療の両方に対応できる RI としての期待が高い⁶⁴Cu(同 12.7 時間)及び⁶⁷Cu(同 61.8 時間)を[1]、安定稼働に定評がある加速器で得られる高速中性子を用いて 合成する事を目指して研究を行ってきた[2]。本講演では、これら目的とする RI の生成に、40 MeV の 重陽子を炭素あるいは Be 標的に照射する事で発生する高速中性子を利用し、実際に記 RI の合成 試験を行い、生成量の評価並びに副生成物に関する情報を得たので報告する。

【実験】原子力機構高崎量子応用研究所 AVF サイクロトロンにおいて、加速した 40 MeV 重陽子 $(0.1 \mu A)$ を厚さ 10 mm の炭素または Be 金属ターゲットに約4時間照射し、^{nat}C(d,n)あるいは Be(d,n) 反応で発生した高速中性子を、目的とする RI の合成に利用した。中性子照射量のモニターとして利用した Nb 箔で挟んだペレット状の濃縮¹⁰⁰Mo、⁶⁸Zn、⁶⁴Zn、並びに⁹⁰Zr 酸化物試料(10mm ϕ 、約300 mg)を、ターゲット前方の空気中に配置し照射した。数時間の冷却後、照射試料を取り出し、試料の γ 線を測定することによって生成核種を同定・定量した。

【結果及び考察】(n,2n)反応による ⁹⁹Mo、(n,p)反応による⁶⁴Cu、(n,dある いは(n,pn)反応による⁶⁷Cu、並びに(n, p)反応による⁹⁰Yの合成を確認した。 発生する高速中性子は(n,4n)反応 による副生成物までもたらすが、 ⁹⁹Mo及び⁶⁷Cuの合成では副生成物 の影響はとても少なく、他の合成反応 と比較して、効率良い合成が可能で あることが分かった。特に、⁶⁷Cuの合 成では、これまで合成反応として報

告されてきた⁶⁸Zn(p,2p)反応などと比較して、ターゲットからの分離時に問題となっていた⁶⁴Cuの生成 がほとんど無いなど、本手法の有用性は明らかである。この結果は、医療用に大量合成する場合に は、取り扱う作業者の被ばく及び廃棄物の低減につながると期待される。更に、中性子による照射は、 試料の冷却が必要なく100gを超える大量の試料照射が可能であるため、医療利用に向けた大量合 成に有利である。また、⁹⁹Moを対象に行った中性子発生用のターゲットの比較実験では、Be は炭素 に比べ約 1.5 倍の中性子を発生することが確認できた。本反応は中性子発生に効果的であるが、放 射化による Be の残留放射能(主に半減期 53 日の ⁷Be)が炭素に比べ多く、Be ターゲットを大電流に よる照射に実際に利用する場合は、その取り扱いに注意する必要がある。

【参考文献】

I. Novak-Hofer and PA. Schubiger: Eur. J. Nucl. Med. 29 (2002) 821.
 Y. Nagai et al., J. Phys. Soc. Jpn. 82 (2013) 064201.
 N. Sato et al., J. Phys. Soc. Jpn. 83 (2014) 073201.

Medical Radioisotope Production with Accelerator Neutrons by 40 MeV Deuterons TSUKADA, K., SATO, N., WATANABE, S., ISHIOKA, N. S., HATSUKAWA. Y. HASHIMOTO, K., KIN, T., KAWABATA, M., SAEKI, H., NAGAI, Y.

1B07 ^{7Li} イオンビームを用いたアスタチン、ヨウ素 RI の製造と利用

(JAEA¹、金沢大理工²、金沢大医薬保健³、金沢大院自然⁴) ○西中一朗¹、 横山明彦²、鷲山幸信³、天野良平³、前田英太⁴、谷口拓海⁴、村上拳冬⁴、 渡辺茂樹¹、鈴木博元¹、石岡典子¹、橋本和幸¹、牧井宏之¹

【緒言】内用放射線治療への応用が期待されている α 放射性同位体²¹¹At は、一般に、加速器を 用いて核反応²⁰⁹Bi(⁴He,2n)²¹¹At[1]で合成されるが、我々は²⁰⁹Bi(⁷Li,5n)²¹¹Rn 反応を利用した ²¹¹Rn/²¹¹At ジェネレータで供給する新しいシステムの開発プロジェクトを進めている。この開 発プロジェクトに必要なアスタチン、ヨウ素 RI を合成するため、⁷Li イオンビームを用いた ²⁰⁹Bi(⁷Li,xn)^{216-x}Rn、^{nat}Pb(⁷Li,xn)^{nat-x}At、^{nat}Sn(⁷Li,xn)^{nat-x}I 反応の核反応断面積を測定し、基礎基 盤となる核データを決定した。さらに、これらの反応で合成したアスタチン、ヨウ素 RI の分 離・精製方法を開発した。本講演では、アスタチン、ヨウ素 R I の製造に関する研究成果を 中心に報告する。

【実験】原子力機構タンデム加速器において 50、60 MeV の ⁷Li³⁺ビームを ²⁰⁹Bi、^{nat}Pb、^{nat}Sn 金 属薄膜標的に照射して、Rn、At、I 同位体を製造した。励起関数を求めるため金属薄膜をア ルミ箔で覆い、3-5 組重ねて照射した。それぞれの照射試料中に生成した放射性同位体の放 射能を γ 線スペクトロメトリーで求めた。 α 放射性同位体 ²¹¹At の放射能は、At トレーサー溶 液から α 線源を作成し[2]、 α 線スペクトロメトリーで求めた。トレーサー溶液は、金属薄膜 中に生成した At、I 同位体を乾式蒸留に基づいた化学分離・精製法により調整した。

【結果・考察】測定した放射能、ターゲット厚、ビーム量から反応断面積を求めた。図に natPb(⁷Li,xn)^{nat-x}At、^{nat}Sn(⁷Li,xn)^{nat-x}I反応の励起関数を示す。曲線で示した総計模型計算[3]は、 実験値をほぼ再現している。入射エネルギーを制御することで、無担体At、I同位体を異な る存在比で製造することができ、核医学研究分野以外でのトレーサー利用も期待できる。 講演では、本研究で製造、精製したアスタチン、ヨウ素 RI を利用した研究例も紹介する。

【参考文献】[1]M. R. Zalutsky and M. Pruszynski, Current Radiopharmaceuticals 4(2011)177-185. [2]西中ら、第 56 回放射化学討論会 1B01(2012). [3]K. Nishio et al., Phys. Rev. C 62(2000)014602-1-12.

Production and utilization of astatine and iodine radioisotopes using ⁷Li ion beams NISHINAKA, I., YOKOYAMA, A., WASHIYAMA, K., AMANO, R., MAEDA, E., TANIGUCHI, T., MURAKAMI, K., WATANABE, S., SUZUKI, H., ISHIOKA, N. S., HASHIMOTO, K., MAKII, H..

^{nat}C(*d,n*)反応による高速中性子を利用したがん治療用 ⁶⁷Cu の製造

(原子力機構 原子力エネルギー基盤連携センター¹、原子力機構 量子ビーム応 用研究センター²)○橋本和幸^{1,2}、川端方子¹、佐伯秀也¹、塚田和明¹、佐藤 望¹、 本石章司¹、永井泰樹¹、渡辺 智²、石岡典子²

【背景・目的】 ⁶⁷Cu(半減期 62 時間)は、がん治療に適した β 線(平均エネルギー141 keV) と画像診断に適した γ 線(185 keV 等)を同時に放出するため、がん治療用核種として有望 視されている。現状では、その製造方法として高エネルギー陽子(50~200 MeV)による ⁶⁸Zn(*p*,2*p*)⁶⁷Cu反応が最適と考えられているが、生成量が限られていることや副生成 RI(^{66,67}Ga, ⁶⁴Cu 等)の多さ等の問題から、研究開発も限定的な状況である。 そこで、従来法に代わる製 造法として、^{nat}C(*d*,*n*)反応による高速中性子を用いて ⁶⁸Zn(*n*,*x*)⁶⁷Cu反応(*x=n'p*,*d*)により製造 した ⁶⁷CuのZn ターゲットからの分離・精製及び抗体標識に有用なモデル配位子である DOTA, TETA への標識を実施した。

【実験】高崎研サイクロトロンの重陽子ビーム (40 MeV, 2 μ A) を炭素標的に照射し、^{nat}C(*d*,*n*) 反応によって発生する高速中性子をさらに ⁶⁸ZnO 濃縮ターゲット (ISOFLEX 製 濃縮度 99.291%, 638 mg, 1 cmΦペレット) に 5 時間照射して ⁶⁷Cu を生成した。照射済みターゲット は東海原科研に郵送し、天然 ZnO を加えて 5 g ZnO 相当とし、濃塩酸に溶解後、10 M NaOH で pH を約 3.8 に調整した。Zn-Cu の分離は、キレート樹脂 (Chelex-100) 及び陰イオン交換 樹脂 (AG1-X8) カラムによって行った。⁶⁷Cu の回収は、NaI 検出器 (BIOSCAN) を用いてリ アルタイムで溶離液をモニターしながら行った。最終 ⁶⁷Cu 溶液 (2 M HCl) は、蒸発乾固後、 0.1 M 酢酸アンモニウム (pH=5.5) に溶解・ろ過 (0.22 μ m) して標識実験に用いた。DOTA, TETA の 0.1 M 酢酸アンモニウム溶液と ⁶⁷Cu 溶液を等量混合し、40℃で2時間反応させ、シリカゲ ル TLC 分析 (展開溶媒:1:1メタノール-10%酢酸アンモニウム) によって標識率を求めた。

なお、Cu-Zn 基本的分離・精製法の検討は、東海 核融合中性子源施設で、³H(*d*,*n*)⁴He 反応 で得られる~14 MeV 中性子を天然 ZnO に照射して得られる ⁶⁴Cu, ⁶⁵Zn を用いて行った。

【結果・考察】^{nat}C(*d*,*n*)反応による高速中性子を用いて生成した⁶⁷Cuをキレート樹脂 + 陰イオン交換樹脂2段カラム分離・精製法を用いて単離した最終⁶⁷Cu溶液のγ線スペクトルを図に示す。γ線スペクトルから、不純物 RI は検出されず、放射性核種純度の高い⁶⁷Cu溶液が得られた。また、標識実験の結果、25-100 µM の配位子濃度で⁶⁷Cu-DOTA が 99%以上、⁶⁷Cu-TETAが 97%以上の収率で合成できた。以上の結果、^{nat}C(*d*,*n*)反応による高速中性子を用いて、放

射性核種純度及び化学的純度の高い無担体⁶⁷Cuを製造することに成功した。

1B08

今後は、大量製造化の検討及び 遠隔操作を可能にする装置等の開 発を通じて、高純度⁶⁷Cu大量製造 法の確立を目指す。なお、本研究 は、科学研究費補助金を得て実施 したものである。

Production of ⁶⁷Cu for Cancer Therapy Using Fast Neutrons from ^{nat}C(*d*,*n*) Reaction HASHIMOTO, K., KAWABATA, M., SAEKI, H., TSUKADA, K., SATO, N., MOTOISHI, S., NAGAI, Y., WATANABE, S., ISHIOKA, S. N.

1B09

がん治療に向けた¹⁹¹Ptの製造及び精製

(阪大院理¹、阪大 RI t^2 、阪大院医³、金沢大薬⁴、金大院薬⁵)〇林良彦¹、 高橋成人¹、吉村崇²、池田隼人³、渡部直史³、金井泰和³、畑澤順³、 坂林加奈子⁴、小川数馬⁵、小谷明⁵、篠原厚¹

【緒言】シスプラチン(CDDP)を始めとする白金系抗がん剤は幅広い腫瘍に抗がん作用を示す ため、抗がん剤治療において重要な役割を担っている。しかしながら、これらの薬物動態を 非破壊的にトレースする方法は少なく、その人体内での挙動はほとんど明らかにされていな い。これらのトレースに最も有効なのは Pt の RI を用いる方法であるが、その製造には化学 的性質から¹⁹¹Pt との分離が難しい Ir や Os を必要とし、未だ有効な製造法は確立されていな い。そこで本研究では^{nat}Pt(*p*, *xn*)¹⁹¹Au→¹⁹¹Pt 反応を用いた Pt の RI トレーサーの新規製造、精 製法の確立、及び、これを用いた白金系抗がん剤の体内動態の解明を目指した。本発表では、 ¹⁹¹Pt トレーサーの製造、精製法の検討、並びに、動物を用いた¹⁹¹Pt-CDDP の薬物動態試験に ついて報告する。

【実験・結果】

○¹⁹¹Pt の製造 大阪大学核物理研究センター (RCNP)のAVFサイクロトロンを用い46-60 MeVのプ ロトンビームを 20 µm 厚の^{nat}Pt 箔に照射し、各エネル ギーでの^{nat}Pt(*p*, *xn*)¹⁹¹Au→¹⁹¹Pt 反応による¹⁹¹Pt 及び他 の不純物の生成量を評価した。また、より大量の RI の製造を想定し、6 mm ϕ × 2 mm の^{nat}Pt ペレットを用 い、同様の実験を行った。実験の結果、従来法の 21 - 155 倍の高いビーム効率で¹⁹¹Pt を製造できた。

○¹⁹¹Ptの精製 照射した^{nat}Pt 箔を Scheme. 1 に従っ て処理し、¹⁹¹Pt を分離精製した。有機相中にて¹⁹¹Au より壊変して生成した¹⁹¹Pt は、通常の^{nat}Pt とは異なる 挙動を示したため、有機相を乾固した後塩酸溶液に溶 解させ、改めて Au と¹⁹¹Pt を分離したところ、¹⁹¹Pt の 挙動が^{nat}Pt と同様になることが分かった。分離精製操 作により、非常に比放射能の高い¹⁹¹Pt が収率 85%以上 で得られた。この時¹⁹¹Pt 以外の核種の存在量はその放 射能量の 1%以下であった。

 O^{191} Pt-cisplatin の動物内での薬物動態 本手法によって供給される¹⁹¹Pt の有効性を示すた め、マウスを用いた¹⁹¹Pt-CDDP の薬物動態試験を行った。まず、上記の製造、精製法を用い、 RCNP にて 3.0 MBq の¹⁹¹Pt の生成を行った。このうち、0.53 MBq を用い、文献^[1]を参考に¹⁹¹Pt で標識された¹⁹¹Pt-cisplatin を合成した。得られた¹⁹¹Pt-cisplatin を生理食塩水に溶解し、ddy 雄性 マウス 8 匹にそれぞれ 0.1 ml ずつ尾静脈内投与した。投与後 1 時間及び 24 時間後に 4 匹ずつ屠殺 し、主要臓器の重量を測定後、放射能を γ -カウンターを用いて測定した。今回得られた結果は、 過去の実験とおおよその一致を示しており、詳細については当日発表する。

[1] J. D. Hoeschele et al., Radiochimica Acta. 31. (1982).

Preparation of ¹⁹¹Pt for cancer treatment

HAYASHI, Y., TAKAHASHI, N., YOSHIMURA, T., IKEDA, H., WATABE, T., KANAI, Y., HATAZAWA, J., SAKABAYASHI, K., OGAWA, K., ODANI, A., SHINOHARA, A.,

1B10 湿式分離法を用いた Bi ターゲットからの At-211 の分離

(原子力機構¹、ワシントン大²、アルバータ大³)○渡辺 茂樹^{1,2}、E.R. Balkin²、 D.K. Hamlin²、K. Gagnon³、M.-K. Chyan²、D.S. Wilbur²

【緒言】²¹¹At(半減期: 7.21 h)は、 α 線放出核種を用いた内用放射線治療への利用が期待されている。²¹¹Atの製造では、²⁰⁹Bi(α ,2n)²¹¹At反応により²¹¹Atを生成させた後、乾式蒸留法によりBiターゲットから分離する方法が一般的に用いられている。しかし、乾式蒸留法は²¹¹Atの回収率が安定しないことから、湿式法を用いた分離を検討してきた。その結果、平均回収率78±11% (n = 55)で定常的な製造を実現した¹¹⁰。²¹¹Atを内用放射線治療で利用するには製造の自動化が必須であるが、湿式法におけるジイソプロピルエーテル(DIPE)を用いた²¹¹Atの抽出・逆抽出の過程は、水相と有機相の混和性のため自動化に適さない。そこで本研究では、自動化に適したカラム法を用いたBiターゲットからの²¹¹Atの分離を検討した。

【実験】 樹脂には陰イオン交換樹脂 AG 1x8、陽イオン交換樹脂 AG MP-50 (Biorad Inc.)、ある いは、合成したポリエチレングリコール(mPEG)-2000 導入樹脂 (以下、PEG 樹脂)を用い、 ポリプロピレン製カラムに樹脂(200-800 mg)を充てんしてカラムを作成した。²¹¹At は、ワシン トン大学医学部の Scandronix MC-50 により加速した 28 MeV の α ビームを Bi ターゲット(300 mm x 20 mm x 0.17 µm thickness)に照射することにより生成させ、湿式法による精製後、硝酸、 塩酸およびホウ酸緩衝液(pH 5-10)に添加し、²¹¹At 試料液とした。樹脂への吸着に対する効果 を検討するため二亜硫酸ナトリウム(Na₂S₂O₅)を加えた試料液をあわせて調製した。各試料液 をカラムに加えた後、塩酸あるいは水で洗浄した。その後、溶離液として臭化テトラブチル アンモニウム(TBAB)水溶液、水酸化ナトリウム水溶液、あるいはアンモニア水を用いて溶出 した。アンモニア水は溶出後に蒸留により除去した。試料液、洗浄液、溶離液の放射能量は それぞれ Capintec CRC-15t を用いて測定し、その値から吸着率、溶出率を算出した。

【結果と考察】²¹¹At の陰イオン交換樹脂への吸着率は、8M 塩酸溶液では99%であったのに対し、ホウ酸緩衝液では61-91%であった。一方、陽イオン交換樹脂への吸着率は1M 塩酸溶液では15-29%と低下した。PEG 樹脂への吸着率は8M 塩酸および8M 硝酸では96-99%であった。還元剤を含む場合でも同等の吸着率を示した。陰イオン交換樹脂からの²¹¹At の回収率は、いずれの溶離液を用いても6%以下となった。PEG 樹脂からの回収率は、アンモニア水を用いると60-79%であった。溶出後、蒸留によるアンモニア水の除去を行った結果、溶離液が pH 10-11 の場合では75%の²¹¹At がアンモニア水と分離することができた。以上の結果から、イオン交換樹脂はカラム法に適さず、PEG 樹脂を用いることで、回収率約 60%で Bi ターゲットから²¹¹At を分離できることが明らかとなった。今後は、回収率の向上を目指した溶出条件の最適化を行うとともに、分離の自動化に向けた検討を進める予定である。

[1] E.R. Balkin et al., Appl. Sci., 3, 636-655 (2013)

Isolation of At-211 from an irradiated Bi target using a wet chemistry approach WATANABE, S., BALKIN, E.R., HAMLIN, D.K., GAGNON, K., CHYAN, M.-K., WILBUR D.S.

1B11 有機溶媒を用いたラドン捕集及び壊変生成物の回収に関する基礎的検討 (金沢大院自然¹、金沢大医薬保健²、金沢大理工³、原子力機構⁴)前田英太¹、 〇鷲山幸信²、山田記大¹、谷口拓海¹、村上拳冬³、天野良平²、西中一朗⁴、 横山明彦³

【緒言】アイソトープを使った内用療法に利用可能なα放射体の中でも、半減期7.2時間の²¹¹At は最も臨床応用が期待されるアイソトープである。しかし半減期が短いがゆえにその利用は 製造拠点の大型サイクロトロン施設近辺に制限されている。大型サイクロトロンを利用せず ²¹¹Atの広範囲における国内実用化を目指す方法には、²¹¹Atの親核種²¹¹Rn(半減期14.6時間) を²⁰⁹Bi(⁷Li,5n)²¹¹Rn反応で製造し、ジェネレータ系(図1)として供給することが解決策とし て挙げられる。本研究ではジェネレータの基本構造として溶媒抽出系を採用し、Bi標的から の²¹¹Rnの効率的捕集および壊変生成物の²¹¹Atの回収に関する基礎的検討を行った。

【実験】Al 箔に Bi (1.2-1.5mg/cm²厚)を真空蒸着した標的から成るスタックに、日本原子力研 究開発機構東海タンデム加速器から得られる 60MeV の⁷Li ビームを 150-200nA のカレントで 照射して ²¹¹Rn を製造した。⁷Li ビーム照射後の Bi 標的を 20mL バイアル瓶の中へ入れ、18mL の各種有機溶媒(ジイソプロピルエーテル,メチルイソブチルケトン,トルエン,へキサン, デカン,ドデカン)を加えた後に 6M 硝酸を 2mL 加えて溶解した。残った Al 箔を取り除き、 蒸留水を 2mL 加えてバイアル瓶中の気相を減らし、1 分間の振とうを行い ²¹¹Rn を有機相へ と抽出した。抽出後、有機相から 15mL、硝酸相を 2mL 分取し、各々を Ge 検出器で γ 線スペ クトロメトリーを行い、²¹¹Rn の有機相への捕集率を求めた。

一方、²¹¹Rn から生成する²¹¹At の回収には Rn の捕集に用いた有機溶媒(ヘキサン, デカン, ドデカン)と二相を形成し、且つその後の At 標識化合物の作成することを考慮し、メタノー ルを選択した。²¹¹Rn を抽出した後の有機相 15mL を 15 時間以上静置し²¹¹At の成長を待った 後に、有機相(アルカン相)から 0.5mL を分取して液体シンチレーションカウンター(LSC) 及び Si 表面障壁型検出器(SSD)によるα線測定を行い、残りの 14.5mL の有機相にメタノ ール 2mL を加え、1 分間振とうを行い²¹¹At を逆抽出した。逆抽出後、アルカン相、メタノー

ル相から各々0.5mL ずつを分取して、再度 LSC 及び SSD による測定を行い、²¹¹At の逆抽出率を求めた。 【結果と考察】標的に製造された²¹¹Rn のうち約 70-90%

を18mLの有機相へ抽出することに成功した。これに 対して抽出分離操作後の水相中では²¹¹Rn 由来のγ線 は検出されなかった。したがって残りの²¹¹Rn はバイ アル中のわずかな気相へ飛散したと考えられる。一方、 ²¹¹Rn から生成した²¹¹At のメタノール相への逆抽出率 は 20-30%であった。これはアルカン相中に存在する ²¹¹At の化学状態と関連性があると考えられ、今後より 詳細な検討が必要である。本結果から、溶媒抽出系の ²¹¹Rn/²¹¹At ジェネレータとして利用可能性が示された。

Evaluation of radon trapping and daughter recovery in organic solvent based system MAEDA, E., WASHIYAMA, K., YAMADA, N., TANIGUCHI, T., MURAKAMI, K., AMANO, R., NISHINAKA, I., YOKOYAMA, A.

1B12 サロフェン型配位子をもつ八配位ウラン(V)およびウラン(IV)錯体における安定構造の変化

(阪大院理¹、阪大RIセ²)〇森本佳祐¹、松田佳恵¹、中塚和人¹、篠原 厚¹、吉村 崇²

【緒言】Schiff 塩基が配位した 8 配位 U(IV)錯体は 2 種類の構造異性体を有し、異性化することが知られている。最近、当グループはサロフェン型配位子(Fig. 1)を用いた U(IV)錯体を 1 電子酸化することで安定な U(V)錯体を合成した。構造解析の結果、 出発の U(IV)錯体は 4 方逆プリズム構造であったが、得られた U(V) 錯体は 12 面体構造をとっていることが分かった。このように酸化に 伴い構造変化が起こることが分かったので、今回はより詳細に、同 形の U(IV)錯体及び U(V)錯体の構造変化を調べたので報告する。

【結果と考察】THF中、UCl₄と2当量のサロフェン型配位子を窒素雰囲気下で加熱還流すると 茶色固体が得られた。この固体を CH₂Cl₂から再結晶すると、Fig. 2 に示すように既知の、ウ ラン中心が4 方逆プリズム構造を持つ 1a が得られた。一方、THF から再結晶すると 1a とと もに 1b が得られた。構造解析の結果、Fig. 2 に示すように 1b でウラン中心は 12 面体構造と なっていた。1a と 1b のサイクリックボルタンメトリー(CV)を測定すると、1a、1b はそれぞ れ-0.31 V、-0.43 V に 1 電子の酸化還元波を示した。これらの酸化還元波の強度は時間ととも に変化し、最終的に同一波形となった。この波形は 1a、1b それぞれの成分の足し合わせにな っており、1a ご 1b の異性化における平衡定数は 0.082 と算出された。この結果から U(IV)錯 体では4 方逆プリズム構造が熱的に安定な構造であることが明らかになった。次に CH₂Cl₂中 で 1a を化学的に 1 電子酸化し数日間撹拌するとウラン中心が 12 面体構造を持つ既知の 2b が 得られ、酸化反応とともにウラン中心の構造変化が起こることを確認した。今回、撹拌時間 を 10 分にしたところ、2b とは溶解度が異なる結晶 2a が得られた。構造解析の結果、2a にお けるウラン中心は4 方逆プリズム構造をとっていることが分かった。CV 測定により、2a と

2bの1電子酸化還元電位はそ れぞれ1a、1bと等しく-0.31 V 及び-0.43 Vで観測されたこと から CV のタイムスケールで、 U(V/IV)の酸化還元反応は同一 構造間でほぼ可逆に起こるこ とが明らかになった。さらに 2a、2bも1aと1b同様に溶液 中で異性化することが CV の 波形の時間変化から分かった。 その反応における平衡定数を 算出したところ6.5 となり、平 衡は2bに大きく偏っており、 U(V)錯体では12面体構造のほ

Fig. 2,酸化還元反応と構造変化のスキーム

うが熱的に安定であることが明らかになった。このように今回の研究では、同形構造でもウ ランの酸化数の違いで安定構造が変化するという興味深い結果が得られた。

Conversion of Stable Geometrical Isomers between Pentavalent and Tetravalent Uranium Complexes with Salophen-type Ligand

Morimoto, K., Matsuda, K., Nakatsuka, K., Shinohara, A., and Yoshimura, T..

1B13 金属元素存在下における¹⁷⁷Luと二官能性キレート剤との錯形成

(原子力機構)○渡辺 智、橋本和幸、石岡典子

【緒言】

我々は、がん治療に有用なβ線放出核種である Lu-177 (半減期 6.7 日)の製造研究 (¹⁷⁶Yb (n, γ) ¹⁷⁷Yb (T_{1/2}=1.911 h) → ¹⁷⁷Lu)の一環として、二官能性キレート剤である 1,4,7,10-tetraazacyclododecan-N,N',N'',N'' -tetraacetic acid (DOTA)を用いた ¹⁷⁷Lu-DOTA-抗体の標識が可能な高純度無担体 ¹⁷⁷Luの分離・精製法の開発を進めている。これまで、二官 能性キレート剤への ¹⁷⁷Lu 導入時に Fe 等の不純物が僅かでも存在すると、¹⁷⁷Lu と競合阻害が 生じ、標識率の低下が示唆される実験データを取得してきた。そこで、不純物元素の種類及 び含有量による阻害を体系的に明らかにし、得られた知見を ¹⁷⁷Lu の精製法にフィードバック するため、金属元素存在下における DOTA 及び diethylenetriamine-N,N,N',N'', N'' -pentaacetic acid (DTPA)への ¹⁷⁷Lu 導入に関して検討を進めている。本発表では、既存の結果に加えて、 Mg、Cu 及び Yb による錯形成阻害について取得した知見から、Mg、Ca、Fe、Cu、Zn 及び Yb の錯形成阻害について考察する。

【実験】

5 μL の¹⁷⁷Lu(III)溶液 (Lu:5.0 x 10⁻⁵ M)と 5 μL の Mg(II)、Cu(II) または Yb(III)溶液(2.5 x 10⁻⁵ M~2.5 x 10⁻³ M) との混合溶液に、0.875 μL の酢酸バッファー(3 M, pH=6.0)を加えた後、10 μL の DOTA または DTPA 溶液(5.0 x 10⁻⁵ M)を加えて 40°C で 1.5 時間反応させた。薄層クロマト グラフィーにより、¹⁷⁷Lu-DOTA または ¹⁷⁷Lu-DTPA の放射能量、及び未反応の¹⁷⁷Lu の放射能 量を求め、錯形成率(錯形成実験に使用した¹⁷⁷Lu の放射能量に対する生成した¹⁷⁷Lu-DOTA または¹⁷⁷Lu-DTPA の放射能量) を算出して、各金属元素との比較を実施した。

【結果及び考察】

表1には、DOTA 及び DTPA と¹⁷⁷Lu との錯形成における金属元素の阻害の強さ(実験結果) と、Lu に対する金属元素の安定度定数の比(文献値)の大小関係を示した。安定度定数の比 は、理論的な金属元素による阻害の強さを示している。実験結果と安定度定数の比とを比較 すると、DOTA では、Fe、Yb、Cu 及び Zn の順序が異なっており、DTPA では、Fe 及び Zn の順序が異なっている。我々の実験結果は、安定度定数からだけでは完全には説明できない ことが示唆された。また、今回の実験結果から、¹⁷⁷Lu の製造へフィードバック可能な有用な 知見として、製造した¹⁷⁷Lu に含まれる Mg 及び Ca は阻害を起こさないため取り除く必要は 無いが、Fe、Cu、Zn 及び Yb は阻害を起こすため取り除く必要があることが明らかになった。

	金属元素による阻害の強さ	Luに対する金属元素の安定度定数の比の
	(実験結果)	大小関係(文献値)
DOTA	Mg, Ca < Fe < Yb < Cu < Zn	Mg < Ca < Zn < Fe < Cu < Yb
DTPA	Mg, Ca < Zn < Fe < Cu < Yb	Mg < Ca < Fe < Zn < Cu < Yb

表1 金属元素による阻害の強さ及びLuに対する金属元素の安定度定数の比の大小関係

Complexation of ¹⁷⁷Lu with bifunctional chelators in the presence of competing metals WATANABE, S., HASHIMOTO, K., ISHIOKA, N. S.